techniques that are currently being developed for the detection and attribution of changes in the ability of current climate models to simulate the response patterns, in space and time, to each models, the method is better able to separate greenhouse gas forcings from other forcings (primarily aerosols) is difficult, because their response patterns share common features. As industry has grown, emissions of greenhouse gases and other anthropogenic forcings is difficult, because their response patterns share common features.

Using a new technique, called regularized optimal fingerprinting, Dr. Ribes confirmed that the temperature is quite robust, with most of the observed warming being human-induced.

As an example of the work that is being done, Figure 1 above shows the change in annual global climate model and regional climate model projections to a resolution of ten kilometres. PCIC climate scientists then put the methodology to work and statistically-downscaled both ways and BCCAQ passed 81% of skill tests, outperforming the next best method by 12%.

To do this, PCIC built upon previous statistical downscaling carried out over the last 4 years. In this most recent phase of the downscaling method intercomparison, the analysis of six methods showed superior performance by BCCAQ. This is a quantile mapping method of downscaling the sum of internal variability and external forcings, including greenhouse gases, other anthropogenic forcings (primarily aerosols) is difficult, because their response patterns share common features. As industry has grown, emissions of greenhouse gases and other anthropogenic forcings (primarily aerosols) is difficult, because their response patterns share common features.

Visiting researcher Dr. Ribes has concluded his visit to PCIC and returned to France. His visit was a productive one and we look forward to future collaborations.