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1. Introduction 
In recent years, the Ministry of Forests, Lands, Natural Resource Operations and Rural Development 
(FLNRORD) has requested that climate change be take into account in all ministry decisions. Water 
program staff and decision makers have countered with a request for credible streamflow projections and 
support in understanding their strengths, limitations and uncertainties (Price and Daust, 2019). The 
Ministry of Environment and Climate Change Strategy (ENV), as the lead agency for water science and 
water policy development, has a potential use for streamflow projections in engagement, guidance and 
training materials.  

A number of resources are available to investigate climate change impacts in Canada, many with 
information of relevance for water management, such as https://climateatlas.ca/ and https://climatedata.ca/ 
and https://www.pacificclimate.org/analysis-tools/plan2adapt. These tools offer projected changes to 
temperature and precipitation and some qualitative discussion of possible hydrologic changes by regional 
and municipal boundaries. However, water allocation decisions require information on daily streamflow, 
such as 7-day summer low flow, on a watershed basis. One approach to projecting future daily streamflow 
is using a hydrologic model driven with statistically downscaled global climate models (GCMs). The 
Hydrologic Impacts (HI) Theme at the Pacific Climate Impacts Consortium (PCIC) has worked to 
produce daily streamflow projections in this manner. Its first generation of hydrologic projections covered 
BC’s Peace, Fraser and Columbia River basins and were widely applied (Schnorbus et al., 2014; Shrestha 
et al., 2012; Werner et al., 2013). The results of PCIC’s second generation of hydrologic projections were 
recently made available on PCIC’s Gridded and Station Hydrologic model data portals. A number of 
improvements were made to the GCMs, statistical downscaling and hydrologic modelling techniques 
making these projections more robust for analyzing changes to climate extremes and daily streamflow. 

Despite the scientific advances that have been incorporated in PCIC’s second generation of hydrologic 
projections, they are not necessarily seen as ‘actionable’ or ‘decision-relevant’ results for water managers. 
Decision makers often have specific metrics for planning, which are not the same as those used for 
calibrating and verifying a hydrologic model. Hence, managers are hesitant to take model results ‘off the 
shelf’ (Briley et al., 2015; Jagannathan et al., 2020; Moss et al., 2019). Furthermore, there is a range in 
hydrologic projections caused by uncertainties that cannot be reduced, such as natural climate variability, 
differing climate sensitivities between GCMs and multiple socio-economic trajectories (Knutti and 
Sedláček, 2013). Such uncertainties might prevent the use of projections and lead managers to wait for 
something ‘better’. The irreducible nature of these uncertainties means, however, that hydro-climatic 
scientists and decision makers need to work together to extract as much usable information as possible 
about future hydrologic conditions from the available projections. Thus, co-production of decision-
relevant science is gaining traction in the climate science community (Jagannathan et al., 2020; Vano et 
al., 2018).  

This PCIC report demonstrates an analysis of projected changes in three streamflow metrics that are of 
interest to decision makers. Thus changes in low, mean and high daily streamflow in the 2020s, 2050s 
and 2080s were analyzed in three select watersheds using PCIC’s CMIP5 hydrologic model results. This 
report was enabled with financial support from FLNRORD/ENV that is gratefully acknowledged, and 
draws on hydrologic modelling that PCIC has recently undertaken with support from BC Hydro, its own 
core resources, and Compute Canada. The report is a potential starting point for dialogue between PCIC 
and water managers that would allow both parties to learn more about each other’s needs and capabilities.  

This report is structured as follows. First, we describe the study design and models used to produce 
PCIC’s hydrologic projections. Then we define ‘uncertainty’ in the climate change context and describe 
our methods for exploring strengths, limitation and uncertainties. Next, we present the selected 
watersheds and verification of modelled streamflow. This is followed by projected future climate and 
streamflow by watershed couched within a discussion of consensus in the direction of change. Lastly, we 
outline the strengths and limitations of our study and propose future work.   

https://climateatlas.ca/
https://climatedata.ca/
https://www.pacificclimate.org/analysis-tools/plan2adapt
https://www.pacificclimate.org/data/gridded-hydrologic-model-output
https://www.pacificclimate.org/data/station-hydrologic-model-output
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2. PCIC’s Hydrologic Scenarios 
a. Study Design 

Hydrologic scenarios were produced using a series of models (Figure 1). Model selection and study 
design were guided with the goals of (1) producing hydrologic projections for a large domain with 
techniques that would be robust for extremes and (2) allow exploration of uncertainty contributed by 
Representative Concentration Pathways (RCPs) and Global Climate Models (GCMs) from the World 
Climate Research Program (WCRP) fifth Couple Model Intercomparison Project (CMIP5). CMIP5 
includes a large ensemble of models with an interactive representation of the atmosphere, ocean, land, and 
sea ice, dynamic vegetation and carbon feedbacks (Taylor et al., 2011).  

These hydrologic projections required two chains of models to be built in tandem (Figure 1). On one side, 
the gridded hydrologic model was set-up and calibrated to hydrometric observations, on the other, GCMs 
were selected and downscaled (made to match the resolution of the hydrologic model in preparation for 
driving it) against a gridded observed meteorological dataset. The Variability Infiltration Capacity (VIC) 
hydrologic model, was chosen for this work because it allows model implementation over a large area and 
is known to have a physically realistic representation of the key processes in this region (Schnorbus et al., 
2014). Additionally, it was recently updated to include capability to simulate glaciers and is thus referred 
to as VIC-GL (Schnorbus, 2018).  

VIC-GL was parameterized, or the soil types, vegetation classes, snow elevation bands, etc. were defined 
for each 0.0625° (~5km per side) grid in the modelling domain. Grid cells are approximately 5 km a side 
near 48oN and become longer and narrower going north. The modelling domain, Northwest North 
America (NWNA), covers 41oN to 60oN and 121oW to 110oW and all rivers flowing in and out of BC. A 
gridded meteorological dataset, PCIC’s NWNA met (PNWNAmet) was developed to drive VIC-GL to 
allow calibration and to generate the Reference Simulation for the 1945 to 2012 historical record. 
PNWNAmet was built by interpolating precipitation, minimum and maximum temperature stations from 
Environment Canada’s Adjusted Homogenized Canadian Climate Data (AHCCD) with records 40 years 
or longer using ClimateWNA as a predictor to ensure climatologies, especially for precipitation in BC’s 
mountains, were realistic (Werner et al., 2019a). Sub-basins of the Peace, Fraser and Columbia River 
basins were selected for use with calibration based on being 500 km2, having unregulated flow and data 
over the 1991-2007 calibration and validation period.  

Two of the four available RCPs in CMIP5 were selected to explore a range in future conditions, RCP 4.5 
with the lower approximate total radiative forcing in year 2100 relative to 1750 of 4.5 Wm-2, one of two 
stabilization scenarios, and RCP 8.5, a very high greenhouse gas emissions scenario (8.5 Wm-2). Due to 
computational demand and large storage requirements we were limited in the number of GCMs we could 
use in our hydrologic projections. Six GCMs (Table 1) were selected from CMIP5 based on their range in 
climate extremes (Cannon, 2015) and could be from any of the available runs. These ‘runs’, which are 
generated with the same model set-up except for slightly different initial conditions, are used to test 
internal variability of GCMs. The statistical downscaling technique, the Bias Corrected Constructed 
Analogues with de-trended Quantile mapping (BCCAQv2), was selected for its strength in capturing the 
spatial gradients and daily extremes from the GCMs (Cannon et al., 2015a; Werner and Cannon, 2016). 

Thus, our study design includes one Reference Simulation based on PNWNAmet and 12 hydrologic 
projections, or scenarios (2 RCPs x 6 GCMs) for each selected study basin. All Gridded Hydrologic 
Modelling Data is available on the PCIC data portal for 13 variables in the Peace, Fraser and Columbia 
River basins. Once gridded fluxes are produced with VIC-GL, Runoff and Baseflow are collected and 
routed downstream using an offline routing model called RVIC (not shown). Simulated daily streamflow 
(m3s-1) is a available for 120 sites on PCIC’s Station Hydrologic Model Output portal. Data represent 
naturalized flow conditions (i.e. the effects of upstream regulation are not simulated) for those sites 
affected by storage regulation. For a more detailed description of the VIC-GL hydrologic model, the 
datasets used to parameterize it and the BCCAQv2 statistical downscaling technique see Appendix A. 

https://www.pacificclimate.org/data/gridded-hydrologic-model-output
https://www.pacificclimate.org/data/gridded-hydrologic-model-output
https://www.pacificclimate.org/data/station-hydrologic-model-output
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Figure 1. Hydrologic projection study design overview. 
 

Table 1. Selected CMIP5 GCMs. One historical “all forcings” simulation was used for each model, ending in 2006, 
together with their extensions to year 2100 using the RCP4.5 and RCP8.5 emissions scenarios. 

Model ID Institution 
ACCESS1-0 Commonwealth Scientific and Industrial Research Organization 

and Bureau of Meteorology, Australia 
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada 
CCSM4 National Centre for Atmospheric Research, United States 
CNRM-CM5 Centre National de Recherches Météorologiques and Centre 

Européen de Recherche et Formation Avancée en Calcul  
HadGEM2-ES Met Office Hadley Centre, United Kingdom 
MPI-ESM-LR Max Plank Institute for Meteorology, Germany 

 

b. Uncertainty 
The study design above provides an overview and some rationale for the models used to produce the 
hydrologic scenarios presented in this report. Each model or method was chosen to improve on PCIC’s 
previous approach. However, limitations remain, and perhaps more importantly, the range in future 
climate conditions have not narrowed in CMIP5 versus CMIP3 despite improvements in GCMs (Knutti 
and Sedláček, 2013). Thus, there is uncertainty in future climate projections that carry through into 
hydrologic projections. The word uncertainty has a special meaning in climate modelling: 
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“A state of incomplete knowledge that can result from a lack of information or from disagreement about 
what is known or even knowable. It may have many types of sources, from imprecision in the data to 
ambiguously defined concepts or terminology, or uncertain projections of human behaviour. Uncertainty 
can therefore be represented by quantitative measures (e.g., a probability density function) or by 
qualitative statements (e.g., reflecting the judgment of a team of experts) (see Manning and et al., 2004; 
Mastrandrea, M. D. et al., 2010; Moss and Schneider, 2000).” 

~IPCC, 2013a  
IPCC, 2013: Annex III: Glossary [Planton, S. (ed.)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 
Fifth Assessment Report of the Intergovernmental Panel on Climate Change 
Here we focus on the quantifiable uncertainties, which come from three main sources (1) natural 
variability in the climate, (2) differences in climate model structure, resolution and physics and (3) 
multiple trajectories of green house gas emissions due to a range of socio-economic factors. The relative 
contribution of each source of uncertainty depends on the timescale considered, with natural variability at 
the forefront in the near-term and differences between emissions scenarios generally superseding in the 
long-term (Figure 2).  

 
Figure 2 - Figure AI.SM8.5.28 | (left) Time series of annual temperature change relative to 1986–2005 averaged over land grid 
points in Alaska/NW Canada (60°N to 72.6°N, 168°W to 105°W). (Right) Same for land grid points in West North America 
(28.6°N to 60°N, 130°W to 105°W). Thin lines denote one ensemble member per model, thick lines the CMIP5 multi-model mean. 
On the right-hand side the 5th, 25th, 50th (median), 75th and 95th percentiles of the distribution of 20-year mean changes are 
given for 2081–2100 in the four RCP scenarios. 

The reliance on emissions scenarios is often seen as a limitation, or complication, to using hydrologic 
projections. However, this typically stems from a lack of understanding as to the role and purpose of 
climate scenarios. Scenarios are only intended to describe plausible socio-economic trajectories of the 
future that are constructed to investigate the potential consequences of anthropogenic climate change. 
Priorities for scenario development include having scenarios that spanned the range of future emissions 
and concentrations projected in scientific literature, but also being sufficiently distinct from one another. 
The suite of RCP scenarios therefore includes one mitigation scenario leading to a very low forcing level 
(RCP 2.6), two medium stabilisation scenarios (RCP 4.5 and RCP 6.0), and one very high baseline 
emission scenarios (RCP 8.5). It must be reinforced that the goal of working with scenarios is not to 
predict the future, but to better understand uncertainties and alternative futures, in order to consider how 
robust different decisions may be under a wide range of possible climate futures (e.g., exploring whether 
plans to allocate water are robust to a range of uncertain future climate conditions). We chose RCP 4.5 
and RCP 8.5 to explore a range in climate futures. CO2 concentrations essentially stabilize at the end of 
the 21st century under RCP 4.5, while concentrations continue to rise throughout the century under RCP 
8.5 (Vuuren et al., 2011). 

The CMIP5 GCMs continue to have different responses to the same forcing because of different, 
structure, resolution and physics all with more complexity than that seen in CMIP3 (Knutti and Sedláček, 
2013). However, each is treated as an equally likely alternative future and the range in responses due to 
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GCM differences alone can be comparable with differences due to radiative forcing from RCPs 
(Chegwidden et al., 2019; Shrestha et al., 2019). This might be partly because these long-term model 
experiments come from both Atmosphere-Ocean GCMs (AOGCMs) and Earth System Models (ESMs), 
which have different resolutions and physics (Lehner et al., 2019). In our study, the CMIP5 models were 
screened to eliminate models that had known deficiencies and then, to minimize the computational 
requirement for the hydrologic modelling, six GCMs were selected using Cannon’s (2015) automated 
procedure. It uses a cluster analysis algorithm to select a range of GCMs (all available runs) that span the 
overall range of the ensemble, specifically for climate extremes.  

Thus, our selected ensemble is designed to address (irreducible) uncertainty due global climate models 
(by using multiple GCMs) and to greenhouse gas emissions (by using two RCP emissions scenarios). It 
also aligns with other studies in this region that use some of the same GCMs to drive Regional Climate 
Models (RCMs). Because only one run of a given GCM is included in the selection, uncertainty 
contributed by internal variability, or the response to slightly different initial conditions by a given GCM, 
is not addressed in our study design. However, the range in future responses due to GCM internal 
variability is less than the range between different GCMs and RCPs in the mid to late 21st century (Deser 
et al., 2012). We note that GCM spread is not necessarily a full estimate of uncertainty, because the 
distribution of models in the CMIP ensemble of opportunity is arbitrary and affected by interdependencies 
across models (Knutti et al., 2011). Furthermore, we caution that other methods to quantify uncertainties 
in global temperature, for example, on the basis of observational constraints have yielded larger 
uncertainties than those in CMIP (Knutti et al., 2008). 

3. Data Analysis and Interpretation  
a. Exploring Uncertainty 

Given that uncertainty contributed by global climate models (by using multiple GCMs) and greenhouse 
gas emissions (by using two RCP emissions scenarios) is irreducible, we compare potential differences 
due to assumptions regarding future emissions and different GCM response. We categorized hydrologic 
projections by emissions scenario, where the RCP 4.5 ensemble includes all six RCP 4.5 projections and 
the RCP 8.5 ensemble includes all six RCP 8.5 projections. Ensembles are compared in three 30-year 
climatological periods: near-term (the 2020s: 2011-2040), mid-century (the 2050s: 2041-2070) and end-
of-century (the 2080s: 2071-2100). Since water licences granted in BC do not historically include a 
specified term (i.e., an ‘expiry’ date) information about water availability in the longer term as well as in 
the short and medium term is relevant to water management decisions. These extended periods reduce the 
effects of natural unforced climatic variability that can occur on timescales of years to decades. By this 
method, the dominate source of uncertainty is isolated by planning horizon, which helps water managers 
identify potential risks and opportunities (Bennett et al., 2012; Elsner et al., 2010; Gao et al., 2020; Vano 
et al., 2018, 2010; Woldemeskel et al., 2016).  

A hydrologic projection is a single transient hydrologic simulation forced with downscaled climate data 
from a single GCM, driven by one of two RCP scenarios, for the period 1945 to 2099. Streamflow 
changes are quantified based on comparison between simulated historical and future streamflow for a 
given ensemble member (i.e. GCM and RCP), rather than direct comparison of simulated future 
projections with historical observations. This relative comparison removes the effect of any residual bias 
in the simulated streamflow projections that may remain, despite careful calibration of the statistical 
downscaling and hydrologic model. Thus, the change in some metric for ensemble member i, Vi, is 
calculated as ΔVi = Vi(f) – Vi(b) for absolute changes and ΔVi = [Vi(f) – Vi(b)]/ Vi(b)*100 for relative 
changes, where f and b represent future and baseline periods, respectively. We chose the baseline period 
of 1971-2000 (the 1980s) because it is the latest historical 30-year period, which ends on the decade, 
before the GCMs transition from their historical to future scenarios in 2006. 

Ensemble agreement is a good summary indicator of overall ensemble behaviour that can support water 
managers in understating the uncertainties in hydrologic projections (Chegwidden et al., 2019; Lehner et 
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al., 2019; Melsen et al., 2018). The sign of the minimum, median and maximum ensemble change 
statistics is used to assess the robustness of a projected change. For instance, if the ensemble minimum, 
median and, maximum change all have the same sign (negative = future decrease; positive = future 
increase), this indicates that all ensemble members agree on the direction of future change and consensus 
is strong. If the change statistics have opposite signs, this implies that there is disagreement in the 
direction of change between the ensemble members and the degree of consensus is weaker. An 
interpretation of the degree of consensus given the sign of the ensemble change statistics is summarized in 
Table 2. The ensemble median is used to represent the consensus (i.e. 50-50) estimate when summarizing 
and comparing ensembles and the minimum and maximum are used to represent the ensemble spread or 
range. 
Table 2. Interpretation of ensemble Consensus 

Change by ensemble statistic 
Interpretation of Change 

ΔVmin ΔVmed ΔVmax 
< 0 < 0 < 0 Strong consensus for a future decrease 
< 0 < 0 ≥ 0 Moderate consensus for a future decrease 
≤ 0 0 ≥ 0 Weak to no consensus for future change 
≤ 0 > 0 > 0 Moderate consensus for a future increase 
> 0 > 0 > 0 Strong consensus for a future increase 

 

b. Assessing Strengths and Limitations 
In our study design, we drew on lessons learned from PCIC’s early hydrologic modelling projects and 
other studies to strengthen our approach. For example, we implemented multi-stage calibration that 
constrains parameters with observed snow, evaporation and glacier data, in addition to streamflow 
(Schnorbus in prep.), which helped the model get the right streamflow for the right reason (Bouaziz et al., 
2020). We also strengthened the hydrologic scenarios for use in daily statistics by applying BCCAQv2, a 
statistical downscaling method that works with daily GCM data and matches the spatial gradients of 
precipitation events. These improvement were verified in Werner and Cannon’s (2016) intercomparison 
of statistical downscaling techniques for hydrologic extremes. Other relevant studies include: inter-
comparisons of hydrologic models (Bouaziz et al., 2020; Melsen et al., 2018, 2016; Melsen and Guse, 
2019), calibration approach (Clark et al., 2017, 2016, 2015a, 2015b) and gridded meteorological datasets 
(Elsner et al., 2014; Werner et al., 2019a; Werner and Cannon, 2016). 

To assess the limitations of our approach we start by verifying the simulated daily streamflow from a 
reference simulation (driven by PNWNAmet) against observed Water Survey of Canada data for the 
chosen metrics, low, mean and high flow. Specific flow percentiles define low and high flow. Given daily 
discharge, Q, observed, or simulated, over some period of time (i.e. 1971-2000), the pth-percentile of 
daily discharge, Qp, is that flow magnitude which is not exceeded for p percent of the period. Hence, Qp is 
also called the p-percent non-exceedance flow. Specifically, Q10 is the flow not exceeded 10% of the time 
and Q90 is the flow not exceeded 90% of the time. The Q10 and Q90 are metrics for low and high flow, 
respectively. In the second iteration of this report, Q50, the flow magnitude that is not exceeded 50% of 
the time (also called the median), was added to the analysis to represent central tendency. Seasonal and 
mean annual streamflow were also evaluated because changes in seasonality and overall water volumes 
are paramount in water allocation. 

Finally, in later sections, we compare and contrast our results to others in the region, to get a feeling for 
where our studies align and where they disagree, to explore possible reasons for these differences.  
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4. Select Study Basins 
 

For the purpose of this scoping study, three 
watersheds were selected as case studies: the 
Seymour River near Seymour Arm (Seymour); 
Cayoosh Creek Near Lillooet (Cayoosh); and the 
Chilliwack River at Vedder Crossing (Chilliwack), 
which are all in the Fraser River Basin (Figure 3, 
Table 3).  

Criteria for selection included: i) representation of 
different basins and regions of the province; ii) 
representation of different streamflow regimes; iii) 
watershed area of approximately 1,000 km2 or 
smaller; and iv) absence of significant upstream 
anthropogenic storage infrastructure (based on 
visual inspection using Bing.com and other online 
maps). Based on PCIC’s list of routed streamflow 
sites, it was not possible to meet all of these 
criteria. In particular, it was not possible to find a 
suitable example of a rain-dominated system, or a 
smaller watershed in northern BC Thus, the three 
watersheds selected meet the criteria for size and 
absence of significant upstream infrastructure only.  

The Seymour, which is the farthest northeast, is located in the Caribou Mountains and has a snowmelt 
dominant flow regime (Figure 4, top, black line) with some glacier-melt influence (4.5% of modelled 
area). The Cayoosh, located in the Coast Mountains (Figure 3), also has a snowmelt dominant flow 
regime (Figure 4, middle, black line). The Chilliwack, which is located the farthest south, straddling the 
Canada-US border, has a hybrid rainfall-snowmelt regime (Figure 4, bottom, black line). Figure 3 
displays observed and simulated streamflow for each basin and will be referred to in the Section 5a - 
Streamflow Verification. 
Table 3. Select watersheds metadata  

Station 
(VICID) 

Station 
Name 

Gauge 
Latitude 

Gauge 
Longitude 

Drainage 
Area (km2) 

Regulated 
 

Mean 
Elevation 
(m) 

Hydrologic 
Regime 

08LE027 
(SEYMO) 

SEYMOUR RIVER 
NEAR SEYMOUR 
ARM 

51.26222 -118.9464 805 No 1605 Snowmelt 
Glacier 

08ME002 
(CAYOO) 

CAYOOSH CREEK 
NEAR LILLOOET 

50.66932 -121.9653 885 Yes 1853 Snowmelt 

08MH001 
(CHILLI) 

CHILLIWACK 
RIVER AT VEDDER 
CROSSING 

49.09738 -121.9675 1230 No 1242 Rain/Snow 
Hybrid 

 

  

Figure 3. Study Area 



10 
 

 

 

 

1971-1980 

 
2001-2010 

  

 

 

1971-1980 

 
2001-2010 

  

 

 

1971-1980 

 
2001-2010 

  

Figure 4. Daily composite hydrographs for Seymour (top), Cayoosh (middle) and Chilliwack (bottom) comparing 
modelled (red; VIC-GL-PNWNAmet) versus observed (black; WSC HYDAT for Seymour and Chilliwack, 
naturalized flow provided by BC Hydro for Cayoosh) streamflow over the period 1971-2010. The 10-year periods at 
the beginning (71-80) and end (01-10) of the 40-year period, show how the hydrograph shape can change over time. 
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5. Results 
a. Streamflow Verification 

We present the verification of the VIC-GL streamflow simulation for the Seymour, Cayoosh and 
Chilliwack basins. A split-sample approach was used to calibrate and verify the performance of the VIC-
GL model, with calibration and verification periods as specified in Table 4. A number of objective 
functions are used to assess discharge. Relative bias is a measure of systematic error, in which a value of 
zero (observed and simulated mean are in perfect agreement) is the desired objective. R2 is the square of 
the correlation coefficient, which measures the degree to which simulations capture the temporal flow 
dynamics of the observations. Possible values range from one (perfect correlation) to zero (uncorrelated). 
Mean absolute error (MAE) is a measure that incorporates both systematic and random errors. The Kling-
Gupta efficiency (KGE) was developed to provide diagnostic insight by decomposing model performance 
into equally-weighted measures of correlation, bias and variability (Gupta et al., 2009). Values for KGE 
range from one (perfect fit) to -∞. The Nash-Sutcliffe efficiency (NSE) is a classic skill score, where skill 
is interpreted as the comparative ability of a model with respect to a baseline model, which in this case is 
taken to be the mean of the observations (Nash and Sutcliffe, 1970). In this context, if NSE ≤ 0 the model 
is no better than using the observed mean as the predictor. An NSE equal one indicates perfect model 
performance. In the current application, the NSE is also applied to log-transformed discharge, which we 
call LNSE. The LNSE objective tends to place more emphasis on the lower end of the flow range. The 
results of model calibration and verification of daily streamflow are summarized in Table 5. 

VIC-GL underestimates streamflow during low-flow conditions from September to May, and 
overestimates flows in July in the Seymour River (Figure 2 - top). In Cayoosh Creek, flows are 
underestimated October to mid-May by VIC-GL and overestimated July through September (Figure 2 – 
middle). For the Chilliwack, modelled flows are underestimate December through April flows and 
overestimate April through July. Nevertheless, relative mean annual streamflow volume bias is low in all 
three watersheds, ranging from 11% (Seymour calibration) to 0% (Cayoosh verification) (Table 5). R2 
values during both calibration and validation are high in all three basins, ranging from 0.81 to 0.66. 
Kling–Gupta efficiency (KGE) values for both calibration and validation are reasonable high and similar 
across the three watersheds, where all values are greater or equal to 0.79. We also note that NSE values in 
all cases exceed zero (i.e. the model is superior to the mean), although the values are somewhat low 
(below 0.7) in the Cayoosh (verification) and Chilliwack (calibration and verification). However, model 
performance tends to degrade when measured by the LNSE criterion (particularly in the Seymour), 
indicating the lower flows are not as accurately simulated as higher flows. In all three basins, the 
calibration is very robust as model statistics change very little between calibration and verification. 
Overall, model performance is good in these watersheds. Evaporation, snow water equivalent and glacier 
changes, where applicable, we are also simulated. This suggests that this implementation of VIC-GL is 
doing a reasonable job of replicating the physical drivers of streamflow and, with the possible exception 
of low flows, giving us confidence that VIC-GL will simulate plausible responses to climate forcings.  
 

Table 4. Calibration and verification evaluation periods 

 Discharge Evapotranspiration Snow Cover Glacier Mass Balance 
Calibration  1991-2000 1991-2000 2000-2005 1985-1999 
Verification  2001-2007 2001-2005 2006-2010 1985-1999 
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Table 5. Calibration and Verification Statistics for Streamflow 

Statistics 
Seymour Cayoosh Chilliwack 

Calib. Verif. Calib. Verif. Calib. Verif. 
Mean obs (m3s-1)     38.2     35.5     20.0     19.3     67.1    62.7 
Mean sim (m3s-1)     34.1     31.9     19.3     19.4     62.5    59.8 
Relative bias     0.11     0.10      0.04      0.00     0.07    0.05 
R2     0.78     0.81      0.75      0.67     0.66    0.68 
MAE (m3s-1)     13.9     12.0      7.0      7.7     20.5    19.6 
KGE     0.83     0.83      0.84      0.79     0.80    0.81 
NSE     0.74     0.77      0.70      0.59     0.60    0.67 
LNSE     0.21     0.31      0.65      0.61     0.41    0.59 

 

More germane to the purpose of the current report, we also assessed the ability of VIC-GL to replicate 
observed low (Q10), median (Q50) and high (Q90) daily mean streamflow. This assessment is conducted by 
comparing percentiles derived from the reference streamflow simulation to observations at each gauging 
site (Figure 3). Results of this comparison for the 40-year period, 1971 to 2010, are presented in Table 6. 
The LNSE statistics indicate that the accuracy of VIC-GL in simulating low flow is relatively poor, 
especially for Seymour and Cayoosh, with VIC-GL substantially underestimating the magnitude of Q10 in 
these two basins. Median flow (Q50) is simulated well in Cayoosh, moderately in Chilliwack and not so 
well in the Seymour. For Q90, the model performs well as the relative difference between simulated and 
observed reduces to ≤ 10% for all three basins.  
 

Table 6. Verification of VIC-GL Flow Percentiles (1971-2010). 

Type Flow 
Metric 

Basin 
Seymour Cayoosh Chilliwack 

Observed 
(m3/s) 

Q10 6 4 23 
Q50 18 9 51 
Q90 100 50 133 

Simulated 
(m3/s) 

Q10 1 2 16 
Q50 11 8 42 
Q90 105 53 131 

Difference 
(%) 

Q10 -80 -51 -31 
Q50 -38 -10 -19 
Q90 5 6 -2 

 

On an annual and seasonal basis, over the same 40-year period, 1971 to 2010, the simulated flow matches 
the volumes and seasonality reasonably well (Table 7). Percentage differences are largest in the winter 
(>40%) when flows are lowest. The model underestimates spring flows by 29% in both snow-dominate 
basins, the Seymour and Cayoosh. March and April are also relatively low-flow months. Additionally, 
snowmelt runoff is slightly delayed in the simulated flows, with a shallower rising limb in the hydrograph 
versus observed (Figure 4). In the Seymour, the model also underestimates fall streamflow. The 
calibration approach prioritizes maximizing the model’s ability to replicate the timing and volume of the 
snowmelt freshet, which occurs in summer in all three basins. 
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Table 7 Verification of VIC-GL Flow by Season and Annually (1971-2010). 

Type Flow 
Metric 

Basin 
Seymour Cayoosh Chilliwack 

Observed 
(m3/s) 

Spring 44 16 71 
Summer 73 43 92 
Fall 20 11 48 
Winter 8 6 57 
Annual 36 19 67 

Simulated 
(m3/s) 

Spring 31 11 68 
Summer 80 49 93 
Fall 13 12 41 
Winter 3 3 35 
Annual 32 19 59 

Difference 
(%) 

Spring -29 -29 -5 
Summer 9 15 2 
Fall -36 6 14 
Winter -68 -41 -40 
Annual -13 1 -12 

 

b. Climate 
Historically (1971-2000), the majority of precipitation arrives between November and March in all basins 
(Figures 5, 6 and 7 – top row – black line) based on the median of six GCMs statistically downscaled with 
BCCAQv2 using PNWNAmet as a reference gridded observational dataset (Hiebert et al., 2018; Werner 
et al., 2019a; Werner and Cannon, 2016). Precipitation is lowest in August and September in the Seymour 
and Cayoosh, and July and August in the Chilliwack. Average daily minimum temperatures are below 
zero October through May in the Seymour and Cayoosh, and November through May in the Chilliwack 
(Figures 5, 6 and 7 – middle row – black line). Average daily maximum temperatures are below 20°C in 
the two more northern, higher-elevation Seymour and Cayoosh basins, and above 20°C in the more 
southern, lower-elevation, Chilliwack basin (Figures 5, 6 and 7 – bottom row – black line). The warmest 
months are, July and August in all basins. 

In the future, precipitation will increase in fall (September, October, November), winter (December, 
November and January) and spring (March, April and May), and decrease in summer (June, July and 
August) based on the median of six GCMs in the RCP 4.5 and RCP 8.5 ensembles (Figures 5, 6 and 7 – 
top row). These changes start in the 2020s, increase in magnitude out to the 2080s, and are greater under 
RCP 8.5 than RCP 4.5 (Appendix B). However, consensus in the projected precipitation changes is 
moderate in all seasons, except spring; some models project increases while others project decreases in 
fall, winter and summer, while in spring, all models project increases. Precipitation is projected to 
increase on an annual basis, although consensus is weak and projected increases for the 2020s are less 
than 10% for all basins. Minimum and maximum temperatures will increase in all seasons in all three 
basins for all GCMs and both RCPs (Figures 5, 6 and 7 – middle and bottom rows; Appendix B). Hence, 
consensus is strong for projected increases in minimum and maximum temperature regardless of season. 
Temperature increases are projected to be greater further out in the future and greater under RCP 8.5 
versus RCP 4.5 for all future time horizons (Appendix B). The winter season, when minimum 
temperatures are below zero, begins to shorten in all basins as early as the 2020s (Figures 5, 6 and 7 – 
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middle rows). Warming is an expected outcome of increased greenhouse gas forcings while precipitation 
changes are more uncertainty at region scales, especially in this region of the world (Lehner et al., 2019). 

 

  

  

  
Figure 5 – Composite precipitation (mm – top), minimum temperature (°C - middle) and maximum temperature (°C - 
bottom) of the Seymour River for the historical (1971-2000 (black)) and three future periods (2021-2040 
(burgundy), 2041-2070 (red) and 2071-2099 (salmon)) based on six GCMs per ensemble, RCP 4.5 (left) and RCP 
8.5 (right). Median of climatological mean daily precipitation, minimum temperature and maximum temperature 
shown with solid lines and the min/max range is shown with shading.  



15 
 

  

  

  
Figure 6 - same as Figure 5 but for Cayoosh. 
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Figure 7 - same as Figure 5 but for Chilliwack 
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c. Seasonal and Annual Streamflow 
Historically (1971-2000), streamflow is greatest in summer (June, July and August), followed by spring 
(April, May and June), fall (September, October and November) and winter (December, January and 
February) in all basins (Figures 8, 9 and 10). In the Seymour and Cayoosh basins, the seasonal discharge 
is dominated by the spring-summer freshet event and winter streamflow is an order-of-magnitude lower. 
In the Chilliwack, however, although streamflow is dominated by spring and summer snowmelt runoff, a 
substantial amount of streamflow also occurs in the fall and winter. Mean annual flow is generally 
governed by annual precipitation and varies from 19 m3/s in the Cayoosh Creek, the driest basin, to 32 
m3/s in the Seymour River, to 57 m3/s in the Chilliwack, the wettest basin (Table 7).  

In the future, streamflow in the Seymour and Chilliwack basins is projected to experience a seasonal shift, 
where maximum streamflow moves from summer to spring (Figures 8 and 10). In the Cayoosh, maximum 
streamflow will still occur in summer, but spring streamflow will increase (Figure 9). Streamflow is 
projected to decrease in summer and increase in winter in all three basins (Figures 8, 9 and 10). Fall 
streamflow is projected to decrease in Cayoosh Creek while it is projected to increase in the Chilliwack 
and Seymour Rivers (Figures 8, 9 and 10). All projected changes are estimated based on the median of six 
GCMs in the RCP 4.5 and RCP 8.5 ensembles. Consensus is strong for increases in spring, decreases in 
summer and increases in winter for all basins (Appendix C). Fall changes have strong consensus in the 
Cayoosh and Chilliwack under RCP 4.5 and the Seymour and Chilliwack under RCP 8.5 and only 
moderate consensus in the Seymour under RCP 4.5 and the Cayoosh under RCP 8.5. Annual streamflow 
is projected to increase under either RCP, although consensus is moderate and increases are less than 
10%.   

Projected changes in streamflow in these snowmelt-dominated basins make sense in a warming world. 
Temperature increases cause more precipitation to fall as rain versus snow, reduce snowpack 
accumulation and an earlier freshet. In section 5b, we reported strong consensus in increased minimum 
and maximum temperature in all seasons for all basins and only moderate consensus in projected 
precipitation changes in all seasons, but spring. Thus, seasonal shifts in streamflow are a palpable result 
of warming temperatures (Barnett et al., 2005; DeBeer et al., 2015) for which consensus is strong. 
Continuation of this trend into the future has been a working hypothesis for close to two decades (Livneh 
and Badger, 2020; Vano, 2020). The additional precipitation in spring also contributes, possibly to melt 
and to increases streamflow. Basins near the zero-degree isotherm or closer to ‘freezing-level’ are more 
vulnerable (Dierauer et al., 2020; Schnorbus et al., 2014). Thus, the impact of warming is strongest on the 
Chilliwack, especially in terms of the shift in seasonality (Figure 10). Higher elevation areas in the 
Cayoosh watershed, for example, will remain colder longer than the lower elevation areas of the Seymour 
and Chilliwack watersheds (Table 3). Therefore, it will experience less change. Similar results have been 
found by other studies (e.g. Chegwidden et al., 2019; Livneh and Badger, 2020; Schnorbus et al., 2014; 
Shrestha et al., 2012).  

Annual streamflow is projected to decrease in the earlier periods and increase in the later periods in the 
Seymour and Cayoosh, and is projected to increase for all periods in the Chilliwack (Appendix C). 
Annual average daily streamflow reflects changes in annual precipitation. More warming brings more 
moisture in the atmosphere. Thus, further into the future, and under the scenario with a stronger warming 
signal (RCP 8.5), greater increases are projected. However, projected increases are less than 10% and 
consensus is moderate. Similar magnitudes of increase have been projected by other studies using slightly 
different methods, such as CMIP3 versus CMIP5, dynamic downscaling versus statistical downscaling, or 
old versus new versions of VIC (e.g. Chegwidden et al., 2019; Elsner et al., 2010; Lehner et al., 2019; 
Schnorbus et al., 2014; Shrestha et al., 2019, 2014; Werner et al., 2013). 
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Figure 8. Composite hydrographs of the Seymour River for the historical (1971-2000 (black)) and three future 
periods (2021-2040 (burgundy), 2041-2070 (red) and 2071-2099 (salmon)) based on six GCMs per ensemble, RCP 
4.5 (left) and RCP 8.5 (right). Median (min/max range) of climatological mean daily discharge in m3s-1 shown with 
solid line (shading). Low flow (Q10), median flow (Q50) and high flow (Q90) in m3s-1 median and min/max range 
shown with horizontal solid line and shading, respectively for same periods: the 1980s, 2020s, 2050s and 2080s. 

 

  

Figure 9. Same as Figure 11, but for Cayoosh. 

 

  

Figure 10. Same as Figure 11, but for Chilliwack.  
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Projected increases and decreases are generally stronger in magnitude under RCP 8.5 versus RCP 4.5, 
especially farther out in the future (Figures 8, 9 and 10). The median percent winter streamflow increase 
projected under RCP 8.5 in the 2080s is almost twice that projected under RCP 4.5 in all basins. The 
difference in magnitude of change projected based on one GCM versus another under the same emission 
scenario can be as large as or larger than the difference in the median projected change under RCP 8.5 
versus that for RCP 4.5 in the 2080s (Figures 11, 12 and 13) when divergence in temperature between 
scenarios is strongest (Figure 2). We expect a wide range in GCM response based on our approach to 
GCM selection where we targeted the widest range between climate extremes. Other studies have also 
found a wide range in response for CMIP5 (Chegwidden et al., 2019), which might be related to the 
greater complexity in CMIP5 models versus CMIP3 (Knutti and Sedláček, 2013).  

 

 
Figure 11 - Percentage change in spring, summer, fall, winter and annual streamflow for the 2020s, 2050s and 2080s in the 
Seymour. 

 
Figure 12 - same as Figure 8, but for Cayoosh.

 

Figure 13 - same as Figure 8, but for Chilliwack. 
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d. Low, Median and High Flow 
During the baseline (1971-2000) period, low (Q10), median (Q50) and high (Q90) daily mean flows for all 
three basins generally reflect the seasonal streamflow distribution. In all three basins, low flow occurs 
during winter when precipitation is stored in the snowpack and runoff is low (Figures 8, 9 and 10). In the 
Seymour and Cayoosh, this translates to very small Q10 values. Recall from the Streamflow Verification 
section that simulated Q10 values in the Seymour and Cayoosh underestimated observed by ~50% or more 
(Table 6). Because the Q10 values are small, differences are large when reported as percentages. 
Furthermore, multiple factors contribute to the mismatch between simulated and observed winter low 
flows in snow-dominated watersheds, including measurement error during ice-on conditions and 
uncertainty of hydrologic model parameterization, particularly for those parameters that affect slow 
hydrologic components (groundwater and soil moisture) that control low flow magnitudes (Dierauer et 
al., 2020; Her et al., 2019). Nevertheless, the timing and relative magnitude of simulated Q10 tracks well 
with observed. In the Chilliwack, which experiences a more transient snowpack, Q10 values are an order-
of-magnitude higher than in the Seymour and Cayoosh (Table 6). Negative bias in Q50, especially in the 
Seymour, tells us that, based on the calendar, year simulated flows arrive later than observed. In all three 
basins, high flows occur during the spring-summer freshet and Q90 values are one or two orders-of-
magnitude larger than Q10, being highest in the Chilliwack and lowest in Cayoosh Creek (Table 6).  

Projected changes in the Q10, Q50 and Q90 are represented graphically in combination with climatologic 
daily mean discharge for the RCP 4.5 and RCP 8.5 ensembles for four time periods the 1980s (baseline), 
2020s, 2050s and 2080s for the Seymour, Cayoosh and Chilliwack basins (Figures 8, 9, and 10). In all 
three basins, the magnitude of Q10 is expected to increase throughout the 2020s, 2050s, and (with the 
exception of Seymour), the 2080s. Results for Q50 indicate little change is expected in the 2020s, but 
values are generally projected to increase from the 2050s to the 2080s. Therefore, more of the water will 
arrive earlier in the year. Both the RCP 4.5 and RCP 8.5 ensemble medians of Q50 are larger in the 2050s 
and 2080s compared to the 1980s with the larger increases under RCP 8.5 (Figures 8, 9 and 10). These 
results are generally consistent with other recent studies of projected streamflow changes in the Pacific 
Northwest region. For example, winter low-flows were projected to increase in nearby basins, such as 
four small watersheds (less than 7km2) representative of four ecoregions in BC (Dierauer et al., 2020), the 
Columbia (Chegwidden et al., 2019) and the Liard (Shrestha et al., 2019). All studies showed larger 
increases projected farther in the future and under RCP 8.5 versus RCP 4.5. 

A decrease in the magnitude of Q90 is generally projected for all three basins, particularly by mid-(2050s) 
and end-of-century (2080s) under RCP 8.5 (Figures 8, 9 and 10). Processes governing snowmelt during 
spring-summer drive the magnitude of Q90 during the historical model verification period (see Section 3). 
Hence, it follows that future changes are dictated largely by changes in the snowmelt freshet. Because 
snow pack accumulation and melt are determined by a combination of temperature and precipitation 
factors, the timing and magnitude of changes in snowmelt can vary by GCM and RCP combination, 
leading to less consensus on the direction of change. Basins such as the Seymour, which are at medium to 
high elevation where the change in the zero-degree isotherm and precipitation phase varies by RCP/GCM 
and in the region where the direction of precipitation change varies more by GCM (Lehner et al., 2019), 
have less consensus in the direction and magnitude of Q90 change. In studies where changes in high flows 
were assessed such as in the Fraser (Islam et al., 2019) and Liard (Shrestha et al., 2019) the direction of 
change was also seen to vary geographically. 

The changes in various flow metrics tend to reflect the processes governing the relevant seasonal changes. 
The Q10 represents the streamflow threshold below which flows occur on average 36.5 days of the year. 
During the baseline period (1971-2000) the majority of these days occur during winter in all three basins 
(Figure 7). As streamflow is projected to increase in the winter but decrease in the summer, the lowest 
streamflow days occur with greater frequency during the summer and fall periods in all three watersheds 
(Figures 8, 9 and 10). In the Seymour and Chilliwack these seasonal changes in low-flow occur under 
RCP 4.5 (Figures 8 and 10 - left). In the Cayoosh, the warmer temperatures of RCP 8.5 are needed to 
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make this change (Figure 9). Nevertheless, days with streamflow ≤ Q10 will still occur during winter and, 
consequently, the change in the magnitude of Q10 itself is predominantly driven by winter season 
temperature and precipitation changes. The one exception may be the Seymour, where the lowest flows 
over 36 days may shift exclusively to late summer (Figure 9), possibly explaining why the trend of 
increasing Q10 may level-off after mid-century. Likewise, the Q90 represents the streamflow threshold 
above which flows occur on average 36.5 days of the year. In all three basins during the baseline period 
this occurs predominantly during the snowmelt freshet. In the Seymour (Figure 8) and Cayoosh (Figure 9) 
basins the high flow period of the year will remain tied to the spring freshet, whereas in the Chilliwack 
(Figure 10), it may shift partially to the fall-winter period. Changes in both the spring freshet (Seymour, 
Cayoosh and Chilliwack) and the greater occurrence of winter streamflow events (Chilliwack) are also 
governed by changes in temperature and precipitation.  

Consensus is strong for increases in low (Q10) and median (Q50) flows, across all three basins (Appendix 
C). For high flows (Q90), although results suggest a decreasing trend, the signal is more mixed. In the 
Chilliwack, there is strong consensus for a decrease in the 2050s and 2080s, for both ensembles 
(Appendix C). In the Cayoosh, the consensus is strong for a decrease in the 2050s for both ensembles, but 
in the 2080s consensus is only moderate for RCP 4.5. In the Seymour, in the 2050s, the consensus for 
change in Q90 is weak for RCP 8.5, but moderate consensus for a decrease for RCP 4.5. In the 2080s, the 
Seymour has a strong decreasing signal in Q90 for RCP 8.5 and only a weak signal for RCP 4.5.  

Overall, the projection results suggest that Q10 is expected to increase and Q90 is expected to decrease by 
mid- and end-of-century at all three locations. Nevertheless, details vary by basin, time period and RCP 
scenario. For instance, changes are generally projected to be larger by end-of-century than by mid-
century. Further, the effect of RCP scenario is that the overall change (whether increase or decrease) is 
usually larger for RCP 8.5 versus RCP 4.5 for a given time period (e.g. Q10 for Cayoosh in the 2080s and 
Chilliwack in the 2050s and 2080s; Q90 for Seymour and Cayoosh in the 2080s). Nevertheless, separation 
between RCP 4.5 and RCP 8.5 response is not really apparent until the 2080s. Indeed, if we compare the 
ensemble ranges for RCP 4.5 and RCP 8.5 (measure of GCM spread within a given RCP) versus the 
maximum RCP range (measure of GCM spread between RCPs) we see that in general the spread between 
individual GCMs for a given RCP is generally larger than, or as large as, the maximum RCP difference. 
In other words, there is more variation in response between different GCMs for the same scenario than 
there is between any given GCM and different scenarios. This all suggests that uncertainty regarding 
future emission is more relevant when contemplating management decisions with a timeframe 50 years or 
more beyond present. 

6. Discussion, Limitations and Future Directions 
Parameterization and calibration of the VIC-GL model in the Seymour, Cayoosh and Chilliwack basins 
was successful based on values of the calibration and verification metrics (Table 5). These sub-basins 
were selected by FLNRORD/ENV based on size, data availability, and absence of significant flow-
restricting upstream structures. Mean annual bias was 11% or less in all basins, R2 values were 0.66 or 
greater and the KGE score was 0.79 or greater; all these metrics indicate relatively good model 
performance during the historical calibration period for annual volumes and the seasonality of 
streamflow. Limitations with the model were seen in the winter low-flows where, especially in the 
Seymour and Chilliwack, LNSE values were low (less than 0.60). Lack of success in calibrating 
hydrologic models during winter low-flow periods is attributed to a number of factors including 
uncertainty is parametrizing the slow hydrologic components that strongly influence low flows, and is 
common across the majority of studies (Her et al., 2019; Melsen et al., 2018; Shrestha et al., 2016, 2014; 
Werner and Cannon, 2016). Low-flow biases, while small in an absolute sense, are large as a percentage 
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due the low volumes of flow in this season. Nevertheless, the seasonality of the streamflow is matched 
well in all basins (Figure 4) and summer low flows are more important to water use allocation decisions.  

Biases are less than 15% in all seasons, except winter in the Chilliwack, except winter and spring in the 
Cayoosh and except winter, spring and fall in the Seymour for the 40-year comparison period (1971-
2010) (Table 7). Moderate performance in spring in the Seymour and Cayoosh relates to late onset of the 
simulated freshet. Additionally, streamflow is relatively low in this season in these basins causing 
differences to be large as a percentage. Moderate performance in the Seymour in the fall could relate to its 
small glacier influence. For this study, a dynamic glacier model was coupled to VIC to represent glacier 
dynamics (VIC-GL). Although Mean Absolute Error (MAE) was only 3% from 1985 to 1999 in the 
Seymour, the simulated evolution of this small glacier from 1970 to 2010 could differ from reality, 
warranting further investigation. Bias for low (Q10) median (Q50) and high (Q90) flows echo the same 
story. Large bias for Q10 and small bias for Q90 in all basins tells us we have calibrated well to the annual-
peak flow and poorly to the winter low-flow. Moderate negative bias in (Q50) tells us that simulated flows 
tend to arrive later in the year than observed. In the Seymour, there is a delay in the onset of the freshet in 
the simulations. In the Chilliwack, streamflow in winter and early spring is low in the simulations, which 
could be caused by too little precipitation in the gridded meteorological forcing and/or not enough 
precipitation falling as rain versus snow. Nevertheless, by season, the model simulations match the 
distribution of observed, with both having the majority of flow in summer. 

Based on the BCCAQv2 downscaled GCMs, using PNWNAmet as a target for three watersheds (6 GCMs 
x 2 RCPs), minimum and maximum temperatures will increase in all seasons in all basins. Consensus is 
strong for these changes with agreement across models and larger projected changes under RCP 8.5 
versus RCP 4.5. Precipitation is projected to increase annually and in all seasons, except summer. 
However, consensus for precipitation changes are weak annually and in all seasons, except spring. Thus, 
we demonstrate that we have selected GCMs that explore a range in climate futures, from a wetter climate 
with relatively less warming to a drier climate with relatively more warming, which gives us confidence 
that we are exploring a substantial portion of the total uncertainty. Furthermore, we have confidence in 
hydrologic changes that are driven by temperature change, such as the reduced snowpack and earlier 
freshet seen in snowmelt-dominated basins. We evaluate future hydrologic conditions by comparing the 
future to the past for the same GCM, such at HadGEM2-ES RCP 4.5, in order to eliminate as much of the 
bias in the hydrologic modelling that remains after careful calibration as possible. By this method, we can 
more confidently explore the sensitivities of the selected basins to changes in temperature and 
precipitation and quantify the uncertainty in future seasonal, annual, low, median and high flow 
contributed by two RCPs and six GCMs.  

As early at the 2050s (2041-2070), in the Chilliwack river basin, the seasonality of when the majority of 
streamflow arrives could change from summer to spring. This shows the susceptibility of lower-elevation, 
southern basins, such as the Chilliwack, versus higher-elevation, northern basins, such as the Seymour 
and Cayoosh. Consensus is strong for increased winter and spring streamflow and decreased summer 
streamflow in all basins. The magnitude of change increases into the future and is greater under RCP 8.5 
versus RCP 4.5. Reduced snowpack, earlier snowmelt and an extended dry season are physically 
plausible responses to increased temperature. Changes such as these have been documented in historical 
records (DeBeer et al., 2015; Mote, 2003a, 2003b). A recent update to the Indicators of Climate Change 
for British Columbia (Ministry of Environment, 2016) included an interactive webpage 
http://www.env.gov.bc.ca/soe/indicators/climate-change/rivers.html displaying seasonal and annual trends 
over 1958-2012 and 1912-2012 for several watersheds in BC; mean summer flow and late summer 
minimum flow decreased in a number of basins. 

Thus, we can say with confidence that the seasonality of streamflow has and will continue to change in 
future. To allow visualization of the direction of change and the range in possible futures attributable to 
different GCMs and RCPs we have presented results in graphical format and spoken to these in the text. 
The median, minimum and maximum of the RCP 4.5 and RCP 8.5 ensembles for minimum temperature, 

http://www.env.gov.bc.ca/soe/indicators/climate-change/rivers.html
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maximum temperature, precipitation and streamflow are provided in the Appendixes. These tables allow 
one to check the consensus of models for direction of change and to compare the magnitude of change 
across the ensemble. However, the purpose of this report was to demonstrate how PCIC’s Hydrologic 
Impacts Theme would verify the hydrologic model, quantify the climate change impacts and explore 
uncertainty for three select basins, for an example set of metrics. A water manager or consultant might be 
interested in other metrics for other sites. Thus, the daily streamflow for ~120 sites in the Peace, Fraser 
and Columbia River basins for the Reference Simulation (PNWNAmet) and six GCMs run under RCPs 
4.5 and 8.5 are all available for download at https://www.pacificclimate.org/data/station-hydrologic-
model-output and subsequent analysis. Future directions include adding a web interface that will display 
and allow downloading of routed streamflow to any gridded in PCIC’s current modelling domain. In 
addition, the utility of using results on sub-basins smaller than 300 km2 will be investigated.  

The purpose of this document was to demonstrate how one might use these hydrologic projections to test 
the limitations and boundaries of their use in a decision-making framework. Where there is a narrow 
margin for error and other options are available for hydrologic modelling, calibration, large ensembles 
etc., effort might be invested to target specific question and metrics not addressed here. For example, 
cumulative discharge seems to be a common metric in water use allocation (Hodgkins et al., 2013; Kaune 
et al., 2020; Zamani et al., 2020; Zamani Sabzi et al., 2019), which was not explored. Co-development of 
climate change projections by decision makers in combination with researchers who quantify impacts is 
recommended when developing climate change projections for operations and decision making 
(Jagannathan et al., 2020; Vano et al., 2018). Alternatively, the storyline approach, where recent events or 
an unprecedented combinations of conditions that would produce extreme conditions are used to make 
possible scenarios, might better support the decision-making process (Melsen et al., 2018; Shepherd, 
2019; Shepherd et al., 2018; Sillmann et al., 2019). Storylines can help to describe and understand 
complex interactions between the physical, ecological, economic and societal aspects of climate change 
related to a specific events and help to create buy-in. Another potential way to improve this work would 
be to presented climate responses, such as the summer streamflow decrease, by global mean temperature 
(GMT) change of 1.5°C, 2°C, 3°C or 4°C of a given GCM (e.g. (Russo et al., 2017; Shrestha et al., 2019; 
Sillmann et al., 2017; Vautard et al., 2014). This ties the response to meeting or not meeting objectives 
such as the Paris Accord and eliminates the choice of RCP from the uncertainty (Cannon et al., in press).  

Improvements to GCMs, downscaling techniques, hydrologic models, calibration approaches are always 
being made. PCIC is following these trends closely and adopting them once they have been proven to 
have scientific credibility. One limitation of our work is that we use methods that are best for the widest 
range of users, over the largest domain, for the most generally applicable metrics. The trade-offs include a 
lack of ability to model small watersheds (<300 km2), limitations in how well the hydrologic model is 
calibrated to extreme high and low flows, and the use of a relatively short calibration period to allow 
more spatial coverage by stations with the same data availability. Thus, work is required to improve 
calibration procedures and to better understand the trade-offs in model performance across the annual 
hydrograph that are made when using a particular set of calibration metrics. PCIC is also bringing another 
hydrologic model on-line, Raven, which is more amenable to the high spatial resolution that is required to 
model small watersheds. 

The PCIC hydrologic projections utilize an ensemble design that specifically addresses uncertainty in 
future greenhouse gas concentrations (using results from multiple RCP scenarios) and the response of the 
climate system to changes in radiative forcing (by using results from multiple GCMs per scenario). 
However, there are additional sources of uncertainty that have not been explored. Specifically, 
uncertainties related to the choice of hydrologic model and statistical downscaling are not explicitly 
addressed. This research suggests that the range of future changes presented for seasonal, annual, low, 
median and high flow may underestimate the true uncertainty.  

https://www.pacificclimate.org/data/station-hydrologic-model-output
https://www.pacificclimate.org/data/station-hydrologic-model-output
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Appendix A – Hydrologic Study Design 
i. VIC-GL Model Summary 

Streamflow was simulated with VIC-GL, an upgraded version of the Variable Infiltration Capacity (VIC) 
model. VIC is a spatially distributed macro-scale hydrologic model that calculates water and energy 
balances in a grid cell, with sub-grid variability of the soil column, land surface vegetation classes and 
topography represented statistically. Spatial variability is modelled by sub-diving the model domain into a 
computational grid with a spatial resolution of 0.0625°, and sub-grid variability is described using 
hydrologic response units (HRUs). HRUs are derived using vegetation classes and 200-m elevation 
bands. VIC runs at a 3-hour temporal resolution and output is aggregated to daily values. Soil moisture 
processes are represented by three-soil layers, spatial heterogeneity of runoff generation with variable 
infiltration curves, and subsurface flow generation using the Arno conceptual model (Todini, 1996). 
Surface runoff is generated when the moisture exceeds the storage capacity of the soil. Water fluxes are 
computed for a range of hydrologic processes such as evapotranspiration, snow accumulation, snowmelt, 
infiltration, soil moisture and surface and subsurface runoff. All stored fluxes from the simulations 
considered in this report are available on the Gridded Hydrologic Model Output page of PCIC’s website: 
https://www.pacificclimate.org/data/gridded-hydrologic-model-output. Runoff and Baseflow from the 
model are collected and routed downstream using an offline routing model called RVIC, which is based 
on the method described in Lohmann et al. (1998). Detailed description of the VIC model is available in 
Liang et al. (1996, 1994) and Cherkauer et al. (2003). The VIC model has seen extensive application in 
the study of climate change impacts in British Columbia (e.g. Curry et al., 2019; Islam and Déry, 2017; 
Kang et al., 2016; Schnorbus et al., 2014; Shrestha et al., 2017, 2012; Werner et al., 2013) and the 
Columbia River Basin (Chegwidden et al., 2019; Elsner et al., 2010; Hamlet and Lettenmaier, 1999). 

For many BC catchments, glaciers provide water to streams, especially during summer and early autumn 
when seasonal snow packs have been depleted. One of the selected basins, the Seymour, has a glacier 
contribution. Continued greenhouse gas induced climate warming in the decades ahead will lead to 
substantial glacier mass loss and subsequent retreat of alpine glaciers (Bürger et al., 2011; Clarke et al., 
2015), excess runoff production during the period when glaciers are retreating and diminished runoff 
production once glacier mass has been depleted. The standard version of VIC appropriates glaciers only 
as deep accumulations of snow, which is insufficient to represent the impacts of glacier retreat well. We 
have therefore developed an upgraded version of the VIC model, called VIC-GL, that explicitly models 
glacier mass balance (accumulation, melt and runoff) and glacier dynamics (change in glacier area) (see 
Schnorbus 2018 for details). 

ii. Model Parameterization 
Parameterization of VIC-GL in these basins includes elevation based on the GMTED2010 digital 
elevation model (Danielson and Gesch, 2011) with elevation bands at fixed 200 m intervals. Vegetation 
classification utilizes the North America Land Cover dataset, edition 2 (Natural Resources Canada / The 
Canada Centre for Mapping and Earth Observation 2013) produced as part of the North America Land 
Change Monitoring System (NALCMS). The NALCMS land cover data set divides North America into 
19 classes representing circa 2005 conditions, with most forest areas in the region for which VIC-GL has 
been parameterized being included in a single class, the temperate or sub-polar needle-leaf forest class. 
This is considered to be too homogeneous in this region and has therefore been further subdivided based 
on vegetation height and leaf area index. Leaf are index data is from the GEOV1 global time series 
dataset (Baret et al., 2013; Camacho et al., 2013). Vegetation height is based on global mapping using 
space borne light detection and ranging (LIDAR) (Simard et al., 2011). The final land cover 
classification, with needle-leaf forest further sub-divided, contains 22 land cover classes. Although an Ice 
class exists in the NALCMS-based land cover inventory, the extent and location of glaciers and ice fields 
was updated using the Randolph Glacier Inventory (RGI) version 3.2 (Pfeffer et al., 2014). Soil 
classification and parameterization relies on physical soil data from the Soils Program in the Global Soil 

https://www.pacificclimate.org/data/gridded-hydrologic-model-output
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Data Products CD-ROM (Global Soil Data Task, 2014). For more details on parameterization of VIC-GL 
in these basins, please see Schnorbus (in press). 

VIC-GL was calibrated and evaluated using a gridded meteorological data set produced specifically for 
hydrologic modelling. This data set, called PNWNAmet, contains daily observations gridded at 1/16° 
(same spatial resolution as VIC-GL) with the variables of maximum and minimum temperature, 
precipitation and average wind speed (Werner et al., 2019b). PNWNAmet provides better representations 
of climate means, extremes and variability compared to other commonly used datasets in the region, and, 
when used to drive a hydrologic model, outperforms these datasets for runoff ratios and streamflow trends 
(Werner et al., 2019b). 

iii. Calibration 
The VIC-GL model was calibrated prior to the generation of hydrologic projections. Calibration is the 
process whereby certain model parameters are adjusted such that simulated output is in close agreement 
observations. During the calibration process, VIC-GL is forced with the PNWNAmet gridded 
meteorological data set (Figure 3). The approach to calibrating VIC-GL in the Fraser was novel, and based 
on a multi-objective approach utilizing not only streamflow observations, but also evaporation, snow 
cover and glacier mass balance (estimated from thinning rates) to constrain the model. For more details 
on calibration of VIC-GL, see Schnorbus (2017). 

iv. Climate Experiments – GCMs and RCPs 
The hydrologic projections were produced using climate experiments from the World Climate Research 
Programme’s (WCRP) fifth Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2011). 
CMIP5 includes a large ensemble of models with an interactive representation of the atmosphere, ocean, 
land, and sea ice, dynamic vegetation and carbon feedbacks (Taylor et al., 2011). These long-term model 
experiments from both Atmosphere-Ocean GCMs (AOGCMs) and Earth System Models (ESMs) 
responded to time-varying concentrations of various atmospheric components, such as greenhouse gases, 
known as Representative Concentration Pathways (RCPs). Four RCPs were defined according to their 
approximate total radiative forcing in year 2100 relative to 1750: RCP 2.6 (i.e. 2.6 W m-2), RCP 4.5, RCP 
6.0, and RCP 8.5, and represent a range of 21st century climate policies, from a very low forcing level 
(RCP 2.6), to two stabilization scenarios (RCP 4.5 and RCP 6.0), and one scenario with very high 
greenhouse gas emissions (RCP 8.5). The Intergovernmental Panel on Climate Change assessed the 
CMIP5 simulations in its 5th Assessment Report (IPCC, 2013b). We chose RCP 4.5 and RCP 8.5 to 
explore a range in climate futures along with a sub-set of the CMIP5 climate models. CO2 concentrations 
essentially stabilize at the end of the 21st century under RCP 4.5, while concentrations continue to rise 
throughout the century under RCP 8.5 (Vuuren et al., 2011).  

In order to minimize the computational requirement for the hydrologic modelling, six GCMs were 
selected from Cannon’s (2015) ranking for Western North America (WNA) (Table 2). This automated 
procedure uses a cluster analysis algorithm to select a range of GCMs (all available runs) that span the 
overall range of the ensemble, specifically for climate extremes. Since all members are included in the 
selection, run numbers can differ by GCM (Table 2). Thus, our selected ensemble is designed to address 
uncertainty due global climate models (by using multiple GCMs) and to greenhouse gas emissions (by 
using two RCP emissions scenarios). It also aligns with other studies in this region that use some of the 
same GCMs to drive Regional Climate Models (RCMs). However, because only one run of a given GCM 
is included in the selection, uncertainty contributed by internal variability, or the response to slightly 
different initial conditions by a given GCM, is not addressed in our study design. 

v. Downscaling 
The climate response to a prescribed RCP scenario that is obtained from CMIP5 climate models is of too 
coarse a spatial resolution, with individual grid cells typically encompassing 10,000 km2, to be used 
directly in driving a hydrology model. GCM output at this resolution does not reflect the detailed spatial 
variation in climate due to local orography, variations in land surface properties, proximity to water 
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bodies and so on that are necessary for simulating surface hydrology well. Therefore, to model changing 
hydrologic conditions at local and regional scales, the calibrated VIC-GL model is driven by daily values 
of minimum temperature, maximum temperature and precipitation that has been statistically downscaled 
to the resolution of the VIC-GL model with the Bias Correction/Constructed Analogues with de-trended 
Quantile mapping reordering downscaling technique (BCCAQv2) (Hiebert et al., 2018) using 
PNWNAmet (Werner et al., 2019b) as the reference meteorology (Figure 3). BCCAQv2 is a hybrid 
method that combines results from bias-corrected constructed analogs (BCCA) (Maurer et al., 2010) and 
de-trended quantile mapping (QMAP) (Gudmundsson et al., 2012). BCCA obtains spatial information 
from a linear combination of historical analogues for daily large-scale fields. QMAP applies quantile 
mapping to daily climate model outputs interpolated to the high-resolution grid using the climate imprint 
method of Hunter and Meentemeyer (2005). The BCCAQv2 method includes a revision to the quantile 
mapping procedure that better preserve changes in quantiles and extremes (Cannon et al., 2015a) as 
compared to its original implementation. BCCAQv2 works well for hydrologic extremes because of its 
ability to resolve event-scale spatial gradients (Werner and Cannon, 2015). For more information on 
BCCAQv2 see (Cannon et al., 2015b; Hiebert et al., 2018; Sobie and Murdock, 2017; Werner and 
Cannon, 2016). 
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Appendix B - Climate 
I. Precipitation 

Table 8 – Median, minimum and maximum seasonal and annual precipitation (mm/day) and percent change (percentage) in the 
2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack based on 6 GCMs run under RCP 4.5. Red indicates negative 
percentage change. 

   Median  Minimum  Maximum 
  

 Sp
ri

ng
 

Su
m

m
er

 

Fa
ll 

W
in

te
r 

A
nn

ua
l 

 Sp
ri

ng
 

Su
m

m
er

 

Fa
ll 

W
in

te
r 

A
nn

ua
l 

 Sp
ri

ng
 

Su
m

m
er

 

Fa
ll 

W
in

te
r 

A
nn

ua
l 

Se
ym

ou
r 

Precipitation (mm/d) 

1980s 3  3  5  7  4   3  3  5  7  4   3  3  6  7  5  
2020s 3  3  6  7  5   3  2  5  6  4   3  3  6  7  5  
2050s 3  2  6  7  5   3  2  6  6  4   4  3  6  8  5  
2080s 4  3  6  7  5   3  2  6  6  5   4  3  7  8  5  

Change vs 1980s (%) 
2020s 7  -7  5  3  2   -5  -14  -1  -2  -2   15  0  10  13  9  
2050s 7  -13  6  3  3   2  -25  2  -7  -2   18  1  17  18  11  
2080s 12  -10  16  8  8   3  -25  2  -3  0   22  5  32  18  18  

C
ay

oo
sh

 

Precipitation (mm/d) 

1980s 2  1  3  4  3   2  1  3  4  3   2  2  4  4  3  
2020s 2  1  4  4  3   2  1  3  4  3   2  2  4  4  3  
2050s 2  1  4  4  3   2  1  4  4  3   2  1  4  5  3  
2080s 2  1  4  5  3   2  1  3  4  3   2  2  4  5  3  

Change vs 1980s (%) 
2020s 8  -7  6  1  2   0  -17  -2  -1  -1   16  1  10  7  5  
2050s 7  -17  6  3  2   3  -29  0  -2  1   12  7  16  11  6  
2080s 11  -19  17  9  7   7  -33  -1  -2  -1   18  11  24  13  12  

C
hi

lli
w

ac
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Precipitation (mm/d) 

1980s 5  3  8  10  6   5  2  7  9  6   5  3  8  10  6  
2020s 5  2  8  10  6   5  2  7  9  6   6  3  8  10  6  
2050s 5  2  8  10  6   5  1  8  9  6   6  3  8  10  6  
2080s 5  2  8  10  6   5  1  8  9  6   5  3  9  11  7  

Change vs 1980s (%) 
2020s 4  -12  3  -1  0   2  -30  -9  -4  -2   18  -5  7  3  2  
2050s 6  -24  0  2  0   -3  -45  -5  -5  -4   16  0  13  7  4  
2080s 6  -28  9  4  2   3  -47  -3  -12  -4   13  4  25  10  12  
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Table 9 – Median, minimum and maximum seasonal and annual precipitation (mm/day) and percent change (percentage) in the 
2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack based on 6 GCMs run under RCP 8.5. Red indicates negative 
percentage change. 

   Median  Minimum  Maximum 
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Precipitation (mm/d) 

1980s 3  3  5  7  4   3  3  5  7  4   3  3  6  7  5  
2020s 3  3  5  7  4   3  2  5  6  4   3  3  6  7  5  
2050s 3  3  6  7  5   3  2  6  7  5   4  3  7  7  5  
2080s 4  2  7  7  5   3  2  6  6  4   4  3  7  8  6  

Change vs 1980s (%) 
2020s 5  -11  3  2  1   0  -20  -6  -2  -4   12  4  13  7  6  
2050s 11  -9  18  4  8   6  -28  4  1  3   28  3  22  15  15  
2080s 15  -23  23  9  8   7  -44  8  -3  0   42  11  37  17  23  

C
ay

oo
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Precipitation (mm/d) 

1980s 2  1  3  4  3   2  1  3  4  3   2  2  4  4  3  
2020s 2  1  4  4  3   2  1  3  4  3   2  2  4  4  3  
2050s 2  1  4  4  3   2  1  3  4  3   2  2  4  5  3  
2080s 2  1  4  5  3   2  1  3  4  3   2  2  4  5  3  

Change vs 1980s (%) 
2020s 6  -16  5  2  1   0  -27  -9  -1  -6   11  10  12  4  7  
2050s 12  -14  14  6  8   6  -24  -1  -3  -2   15  7  25  9  9  
2080s 13  -24  23  9  9   9  -51  -1  -3  -3   30  16  36  15  20  

C
hi

lli
w

ac
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Precipitation (mm/d) 

1980s 5  3  8  10  6   5  2  7  9  6   5  3  8  10  6  
2020s 5  2  8  10  6   5  2  7  10  6   5  3  8  10  6  
2050s 5  2  8  10  6   5  1  7  9  6   6  3  9  10  7  
2080s 5  2  8  10  6   5  1  7  9  6   6  3  10  11  7  

Change vs 1980s (%) 
2020s 5  -26  3  -1  -1   -3  -35  -12  -3  -7   12  7  16  4  3  
2050s 9  -19  10  2  3   1  -46  -9  -4  -4   16  -5  24  8  7  
2080s 11  -35  14  2  3   0  -65  -10  -8  -7   15  4  34  10  9  
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II. Minimum Temperature 
Table 10 – Median, minimum and maximum seasonal and annual Minimum Temperature (°C) and absolute change (°C) in the 
2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack based on six GCMs run under RCP 4.5.  

   Median  Minimum  Maximum 
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Min. Temp. 
(°C) 

1980s -3.0  6.6  -1.8  -10.6  -2.2   -3.4  6.4  -1.9  -11.0  -2.3   -2.8  6.7  -1.6  -10.2  -2.0  
2020s -1.7  8.1  -0.5  -9.4  -0.8   -1.8  7.5  -0.8  -9.7  -1.0   -0.8  8.8  0.1  -8.7  -0.3  
2050s -0.6  9.0  0.6  -8.1  0.4   -1.0  8.3  0.2  -8.6  -0.2   1.0  10.3  1.8  -7.0  1.0  
2080s 0.4  10.0  1.0  -7.5  1.2   -0.6  8.6  0.3  -8.0  0.3   2.1  11.2  2.7  -6.3  1.9  

Change vs 
1980s (°C) 

2020s 1.5  1.4  1.2  1.4  1.4   1.1  1.0  1.1  0.9  1.2   2.0  2.2  1.9  1.8  1.9  
2050s 2.6  2.4  2.4  2.4  2.5   1.9  1.8  1.9  2.1  2.1   3.8  3.7  3.5  3.7  3.3  
2080s 3.7  3.4  2.9  3.2  3.3   2.3  2.1  2.2  2.7  2.5   4.9  4.8  4.4  4.4  4.2  

C
ay

oo
sh

 

Min. Temp. 
(°C) 

1980s -4.9  3.9  -2.8  -10.3  -3.5   -5.1  3.7  -2.9  -10.5  -3.5   -4.7  4.1  -2.6  -9.9  -3.3  
2020s -3.3  5.4  -1.6  -8.9  -2.1   -3.4  4.8  -1.8  -9.6  -2.2   -2.6  6.3  -1.0  -8.4  -1.4  
2050s -2.2  6.1  -0.5  -7.6  -1.0   -2.6  5.5  -0.8  -8.0  -1.3   -1.3  7.8  0.7  -6.8  -0.2  
2080s -1.1  7.2  -0.1  -7.1  -0.2   -2.2  5.8  -0.7  -7.6  -1.0   -0.3  8.6  1.5  -6.0  0.6  

Change vs 
1980s (°C) 

2020s 1.6  1.3  1.2  1.4  1.3   1.4  1.0  1.0  0.6  1.2   2.4  2.3  1.7  2.0  2.1  
2050s 2.8  2.1  2.3  2.6  2.4   2.1  1.7  1.9  2.2  2.2   3.3  3.8  3.4  3.6  3.3  
2080s 4.0  3.1  2.7  3.2  3.2   2.6  2.0  2.2  2.6  2.6   4.4  4.7  4.2  4.3  4.1  

C
hi

lli
w

ac
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Min. Temp. 
(°C) 

1980s -1.1  7.0  1.6  -5.0  0.6   -1.3  6.8  1.4  -5.1  0.6   -1.0  7.1  1.7  -4.8  0.7  
2020s 0.5  8.4  2.7  -3.6  2.0   0.2  8.0  2.4  -4.5  1.8   1.0  9.4  3.2  -3.0  2.7  
2050s 1.7  9.2  3.8  -2.5  3.0   0.7  8.7  3.3  -2.9  2.6   1.8  11.0  5.0  -1.7  3.8  
2080s 2.5  10.2  4.2  -1.9  3.7   1.1  9.1  3.5  -2.3  2.9   2.8  11.8  5.9  -0.9  4.6  

Change vs 
1980s (°C) 

2020s 1.7  1.3  1.2  1.4  1.3   1.3  1.1  0.9  0.4  1.2   2.2  2.3  1.6  2.0  2.0  
2050s 2.8  2.1  2.3  2.5  2.4   1.8  1.8  1.8  2.0  2.0   2.9  4.0  3.3  3.4  3.2  
2080s 3.6  3.2  2.6  3.1  3.1   2.2  2.2  2.0  2.7  2.3   4.1  4.8  4.2  4.2  4.1  
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Table 11 – Median, minimum and maximum seasonal and annual Minimum Temperature (°C) and absolute change (°C) in the 
2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack based on six GCMs run under RCP 8.5.  

   Median  Minimum  Maximum 
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Min. Temp. 
(°C) 

1980s -3.0  6.6  -1.8  -10.7  -2.2   -3.3  6.3  -1.9  -11.0  -2.3   -2.9  6.7  -1.6  -10.2  -2.0  
2020s -1.2  8.2  -0.2  -9.0  -0.5   -1.8  7.7  -1.1  -9.3  -1.0   -0.5  8.8  0.3  -8.2  -0.1  
2050s 0.1  10.0  1.3  -7.3  1.2   -0.8  9.4  0.9  -8.3  0.4   1.8  11.7  2.6  -6.3  2.3  
2080s 2.3  12.7  3.3  -5.0  3.6   1.1  10.9  2.6  -6.2  2.3   4.3  15.0  4.9  -3.4  5.1  

Change vs 
1980s (°C) 

2020s 1.8  1.5  1.5  1.6  1.7   1.0  1.2  0.8  1.3  1.2   2.4  2.4  2.1  2.5  2.1  
2050s 3.3  3.3  3.2  3.3  3.4   2.1  2.8  2.6  2.7  2.7   4.6  5.1  4.4  4.4  4.5  
2080s 5.6  6.1  5.2  5.7  5.7   4.0  4.4  4.3  4.8  4.5   7.3  8.7  6.7  7.3  7.3  
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Min. Temp. 
(°C) 

1980s -4.8  4.0  -2.8  -10.3  -3.5   -5.1  3.7  -2.9  -10.6  -3.5   -4.7  4.1  -2.6  -10.0  -3.3  
2020s -2.7  5.5  -1.2  -8.7  -1.8   -3.6  4.8  -1.9  -8.8  -2.2   -2.5  6.2  -0.8  -7.8  -1.3  
2050s -1.4  7.2  0.2  -7.0  -0.2   -2.3  6.8  -0.2  -7.5  -0.7   -0.3  9.2  1.5  -5.9  1.0  
2080s 0.9  9.7  2.1  -4.8  2.0   -0.9  8.2  1.5  -5.2  1.1   1.9  12.2  3.6  -3.4  3.5  

Change vs 
1980s (°C) 

2020s 2.1  1.5  1.5  1.5  1.7   1.2  1.0  0.9  1.3  1.3   2.3  2.3  1.9  2.6  2.2  
2050s 3.6  3.2  3.0  3.3  3.3   2.4  2.8  2.6  2.8  2.8   4.7  5.2  4.2  4.4  4.5  
2080s 5.9  5.6  5.0  5.5  5.4   3.9  4.4  4.2  5.3  4.7   6.9  8.5  6.3  7.0  7.0  

C
hi

lli
w

ac
k 

Min. Temp. 
(°C) 

1980s -1.1  7.0  1.6  -5.0  0.6   -1.3  6.8  1.4  -5.2  0.6   -1.0  7.1  1.7  -4.8  0.7  
2020s 1.0  8.6  3.1  -3.5  2.3   -0.1  7.9  2.3  -3.6  1.7   1.1  9.2  3.5  -2.5  2.8  
2050s 2.2  10.3  4.5  -1.8  3.8   0.9  9.8  4.0  -2.5  3.1   2.9  12.5  5.7  -0.8  4.9  
2080s 4.3  12.7  6.4  0.3  5.9   2.3  11.5  5.7  -0.5  4.8   4.6  15.4  7.8  1.3  7.2  

Change vs 
1980s (°C) 

2020s 2.1  1.5  1.5  1.5  1.6   1.0  1.0  0.8  1.3  1.1   2.3  2.2  1.8  2.6  2.2  
2050s 3.3  3.3  2.9  3.1  3.1   2.0  2.7  2.5  2.7  2.5   4.1  5.4  4.0  4.3  4.3  
2080s 5.4  5.6  4.9  5.3  5.2   3.3  4.6  4.1  4.7  4.2   5.8  8.4  6.1  6.4  6.6  
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III. Maximum Temperature 
Table 12 – Median, minimum and maximum seasonal and annual Maximum Temperature (°C) and absolute change (°C) in the 
2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack based on six GCMs run under RCP 4.5.  

   Median  Minimum  Maximum 
  

 Sp
ri

ng
 

Su
m

m
er

 

Fa
ll 

W
in

te
r 

A
nn

ua
l 

 Sp
ri

ng
 

Su
m

m
er

 

Fa
ll 

W
in

te
r 

A
nn

ua
l 

 Sp
ri

ng
 

Su
m

m
er

 

Fa
ll 

W
in

te
r 

A
nn

ua
l 

Se
ym

ou
r 

Max. 
Temp. (°C) 

1980s 6.7  17.6  5.5  -4.3  6.4   6.3  17.5  5.3  -4.5  6.3   7.0  17.8  5.7  -4.0  6.6  
2020s 8.0  19.8  6.8  -3.1  7.8   7.9  18.5  6.4  -3.5  7.6   8.2  20.7  7.1  -2.8  8.3  
2050s 9.1  21.2  7.9  -2.4  9.1   8.5  19.1  7.1  -2.7  8.4   9.6  22.9  9.1  -1.8  9.5  
2080s 10.0  22.2  7.9  -1.6  9.7   8.9  19.4  7.2  -2.4  8.9   10.4  23.9  9.7  -1.1  10.4  

Change vs 
1980s (°C) 

2020s 1.4  2.2  1.4  1.1  1.5   0.9  0.9  0.6  0.8  1.0   1.6  3.2  1.5  1.6  2.0  
2050s 2.5  3.5  2.5  1.8  2.7   1.6  1.6  1.3  1.7  1.9   2.9  5.4  3.4  2.6  3.2  
2080s 3.3  4.5  2.5  2.6  3.3   2.0  1.8  1.5  2.1  2.3   4.1  6.3  4.0  3.2  4.1  
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Max. 
Temp. (°C) 

1980s 5.1  14.8  4.9  -3.3  5.4   4.7  14.7  4.5  -3.7  5.3   5.3  15.0  5.0  -3.2  5.5  
2020s 6.4  16.9  6.1  -2.3  6.8   6.3  15.7  5.8  -2.8  6.5   6.6  17.8  6.4  -1.8  7.2  
2050s 7.6  18.0  7.3  -1.5  8.0   7.0  16.2  6.6  -1.7  7.2   8.4  19.9  8.3  -0.9  8.4  
2080s 8.2  19.1  7.4  -0.9  8.6   7.5  16.4  6.8  -1.3  7.7   9.6  20.9  8.9  -0.4  9.4  

Change vs 
1980s (°C) 

2020s 1.5  2.0  1.3  1.0  1.4   0.9  0.9  0.9  0.5  1.0   1.8  3.0  1.5  1.7  1.9  
2050s 2.5  3.1  2.6  2.0  2.6   2.1  1.4  1.5  1.5  1.7   3.4  5.1  3.3  2.6  3.1  
2080s 3.2  4.2  2.7  2.5  3.3   2.5  1.6  1.7  2.1  2.2   4.9  6.1  3.9  3.1  4.1  
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Max. 
Temp. (°C) 

1980s 8.5  18.0  9.7  1.5  9.5   8.2  17.8  9.4  1.4  9.4   8.8  18.2  9.8  1.7  9.6  
2020s 10.2  20.0  11.0  2.6  10.9   9.6  19.0  10.6  2.0  10.5   10.5  21.0  11.2  3.1  11.4  
2050s 11.0  21.2  12.0  3.6  12.1   10.5  19.7  11.5  3.0  11.3   12.4  22.9  13.2  4.0  12.6  
2080s 11.5  22.1  12.2  4.1  12.7   11.2  19.9  11.7  3.9  11.7   13.6  23.8  13.8  4.6  13.7  

Change vs 
1980s (°C) 

2020s 1.7  2.0  1.4  1.1  1.4   0.7  1.0  0.9  0.4  1.0   2.3  3.0  1.5  1.7  2.0  
2050s 2.3  3.1  2.5  2.0  2.7   2.0  1.7  1.6  1.4  1.7   3.9  4.9  3.4  2.6  3.2  
2080s 3.1  4.2  2.6  2.6  3.2   2.5  1.9  1.8  2.4  2.2   5.4  5.8  4.0  3.2  4.3  
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Table 13 – Median, minimum and maximum seasonal and annual Maximum Temperature (°C) and absolute change (°C) in the 
2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack based on six GCMs run under RCP 8.5.  

   Median  Minimum  Maximum 
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Max. 
Temp. (°C) 

1980s 6.7  17.6  5.5  -4.3  6.4   6.3  17.5  5.3  -4.5  6.3   7.0  17.8  5.7  -4.0  6.6  
2020s 8.3  20.0  6.9  -3.0  8.1   8.1  18.7  6.6  -3.2  7.8   8.6  20.9  7.5  -2.2  8.5  
2050s 9.7  22.4  8.7  -1.7  9.7   8.6  20.5  7.6  -2.5  8.8   10.0  23.7  9.6  -1.2  10.4  
2080s 11.9  25.9  10.5  0.1  12.0   10.4  21.8  8.8  -1.3  10.6   12.6  27.6  11.9  0.6  12.9  

Change vs 
1980s (°C) 

2020s 1.7  2.4  1.4  1.3  1.7   1.2  1.0  1.0  0.9  1.2   2.1  3.3  1.8  2.2  2.2  
2050s 3.1  4.7  3.3  2.5  3.3   1.8  2.7  1.9  2.0  2.3   3.7  6.2  3.9  3.2  4.0  
2080s 5.2  8.3  5.1  4.3  5.6   3.5  4.2  3.1  3.2  4.0   6.3  10.2  6.4  5.0  6.6  
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Max. 
Temp. (°C) 

1980s 5.1  14.8  4.9  -3.4  5.4   4.7  14.7  4.5  -3.7  5.3   5.3  15.0  5.0  -3.2  5.5  
2020s 6.7  17.2  6.3  -2.2  7.1   6.5  15.5  6.1  -2.4  6.5   7.3  17.7  6.8  -1.3  7.3  
2050s 8.0  19.3  8.0  -1.0  8.7   7.3  17.7  7.0  -1.2  7.8   9.3  21.0  8.8  -0.2  9.4  
2080s 9.9  22.4  9.8  1.0  10.9   9.3  19.0  8.4  0.5  9.4   11.9  24.3  11.2  1.6  12.0  

Change vs 
1980s (°C) 

2020s 1.7  2.4  1.5  1.3  1.8   1.3  0.7  1.0  0.8  1.0   2.5  2.8  1.8  2.2  2.0  
2050s 2.9  4.4  3.3  2.4  3.3   2.2  2.9  2.1  2.1  2.4   4.6  6.1  3.9  3.4  4.1  
2080s 4.9  7.5  5.1  4.3  5.6   4.2  4.2  3.4  4.0  4.0   7.3  9.5  6.3  5.1  6.7  
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Max. 
Temp. (°C) 

1980s 8.5  18.1  9.7  1.5  9.5   8.2  17.8  9.4  1.4  9.4   8.8  18.3  9.8  1.7  9.6  
2020s 10.3  20.5  11.1  2.8  11.3   9.8  18.8  10.8  2.3  10.5   11.3  20.8  11.7  3.6  11.5  
2050s 11.3  22.5  12.9  4.1  12.9   11.0  21.2  11.9  3.6  12.0   13.2  24.0  13.7  4.8  13.6  
2080s 13.4  25.6  14.6  6.2  15.0   12.4  22.5  13.5  5.5  13.5   15.6  27.2  15.9  7.0  16.2  

Change vs 
1980s (°C) 

2020s 1.8  2.4  1.5  1.3  1.8   1.0  0.8  1.1  0.7  1.0   2.9  2.8  1.9  2.1  2.2  
2050s 2.8  4.5  3.3  2.7  3.4   2.2  3.0  2.3  2.0  2.5   5.0  5.9  4.0  3.4  4.3  
2080s 4.9  7.6  5.0  4.7  5.5   3.7  4.6  3.7  4.0  4.0   7.4  9.1  6.2  5.4  6.8  
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Appendix C - Streamflow 
I. Seasonal and Annual 

Table 14. Median, minimum and maximum seasonal and annual Streamflow (m3s-1) and percent change (%) versus the 1980s in 
the 2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack of six GCMs run under RCP 4.5. Red indicates negative 
percentage change. 

   Median  Minimum  Maximum 
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Streamflow (m3s-1) 

1980s 33  78  11  2  31   30  76  11  2  31   36  79  13  3  32  
2020s 40  68  13  4  31   37  66  9  4  30   46  77  15  5  34  
2050s 47  57  14  6  31   40  51  12  5  29   58  75  17  8  35  
2080s 56  52  17  8  33   45  47  12  6  30   61  64  20  11  37  

Change vs 1980s (%) 
2020s 26  -13  9  73  -1   3  -16  -16  49  -3   33  -3  17  112  7  
2050s 42  -26  15  140  -1   24  -35  -5  108  -6   69  -5  47  247  12  
2080s 71  -34  33  250  5   29  -40  7  142  -6   93  -16  78  360  18  
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Streamflow (m3s-1) 

1980s 12  50  12  3  19   11  49  11  2  19   13  52  13  3  20  
2020s 14  49  10  4  19   12  46  10  3  18   15  50  11  5  20  
2050s 17  44  10  5  19   15  41  9  5  19   21  49  11  7  20  
2080s 20  42  10  7  20   17  37  8  5  19   26  49  13  7  21  

Change vs 1980s (%) 
2020s 17  -5  -12  41  0   -11  -5  -14  35  -3   30  -1  -6  52  2  
2050s 51  -12  -16  80  -2   24  -22  -26  52  -4   88  -3  -8  113  5  
2080s 65  -17  -15  114  4   27  -24  -30  107  -5   129  -1  12  142  13  
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Streamflow (m3s-1) 

1980s 65  94  37  31  57   63  90  34  28  55   68  97  40  32  58  
2020s 75  78  40  41  58   64  69  38  37  56   81  87  41  47  59  
2050s 77  62  42  50  59   73  55  40  48  57   87  70  43  60  61  
2080s 82  54  44  58  61   73  46  42  56  57   91  65  51  67  65  

Change vs 1980s (%) 
2020s 14  -18  8  33  1   -7  -26  0  27  0   24  -5  13  51  6  
2050s 17  -32  7  69  4   7  -41  4  52  -3   37  -26  27  94  9  
2080s 27  -44  19  97  7   7  -50  10  73  -2   39  -28  44  125  16  
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Table 15. Median, minimum and maximum seasonal and annual Streamflow (m3s-1) and percent change (%) versus the 1980s in 
the 2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack of six GCMs run under RCP 8.5. Red indicates negative 
percentage change. 

   Median  Minimum  Maximum 
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Streamflow (m3s-1) 

1980s 33  78  12  2  31   30  76  11  2  31   36  79  13  3  32  
2020s 42  65  12  4  31   41  60  10  4  30   49  70  15  5  33  
2050s 52  53  18  8  33   42  49  13  7  32   61  64  20  11  36  
2080s 64  33  22  16  34   50  23  21  12  30   73  51  29  22  39  

Change vs 1980s (%) 
2020s 31  -16  -3  84  -1   14  -24  -12  49  -7   43  -10  35  128  5  
2050s 56  -32  44  251  6   30  -38  19  180  -2   78  -15  73  368  14  
2080s 101  -58  91  607  8   54  -71  59  378  -5   113  -32  153  858  24  
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Streamflow (m3s-1) 

1980s 12  50  12  3  19   11  49  11  2  19   13  52  13  3  20  
2020s 15  45  10  4  19   14  44  8  4  17   17  49  12  5  20  
2050s 18  45  11  7  20   14  38  9  6  18   23  50  12  8  21  
2080s 25  35  11  12  21   21  25  9  11  18   30  44  13  15  23  

Change vs 1980s (%) 
2020s 34  -8  -15  48  -1   6  -15  -30  22  -11   53  -3  1  63  4  
2050s 45  -13  -10  135  5   9  -23  -23  103  -7   114  -1  4  169  7  
2080s 106  -30  -6  300  10   55  -50  -23  249  -6   173  -12  10  389  20  
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Streamflow (m3s-1) 

1980s 65  94  37  30  57   64  90  34  28  55   69  97  40  32  58  
2020s 78  70  40  42  58   67  63  35  40  55   84  77  45  48  61  
2050s 80  58  46  58  61   72  49  40  55  57   86  66  49  66  62  
2080s 72  43  49  86  63   69  37  43  70  56   80  44  58  89  66  

Change vs 1980s (%) 
2020s 19  -24  7  42  3   -3  -32  -13  26  -6   31  -16  31  57  6  
2050s 22  -38  23  98  9   5  -48  1  72  -3   35  -26  45  124  11  
2080s 12  -55  35  186  11   0  -61  7  121  -3   23  -52  72  204  16  
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II. Low, Median and High 
Table 16. Median, minimum and maximum low (Q10), median (Q50) and high (Q90) Streamflow (m3s-1) and percent change (%) 
versus the 1980s in the 2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack of six GCMs run under RCP 4.5. Red 
indicates negative percentage change. 

   Median  Minimum  Maximum 
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Streamflow (m3s-1) 

1980s 1 11 103  1 11 101  1 12 109 
2020s 2 11 104  2 9 100  3 13 112 
2050s 3 11 100  2 10 96  3 13 113 
2080s 3 14 104  2 11 93  4 17 114 

Change vs 1980s (%) 
2020s 103  -4  0   60  -21  -3   132  16  9  
2050s 137  -5  -2   81  -15  -7   143  24  9  
2080s 150  14  0   87  -4  -10   199  56  10  
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Streamflow (m3s-1) 

1980s 2  8  56   1  7  54   2  9  56  
2020s 3  9  53   2  9  52   3  10  56  
2050s 3  10  52   3  9  51   4  10  53  
2080s 4  11  52   3  9  49   5  12  57  

Change vs 1980s (%) 
2020s 63  21  -3   46  7  -7   96  28  0  
2050s 101  30  -6   71  7  -10   130  37  -4  
2080s 168  40  -5   123  21  -12   177  48  5  
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Streamflow (m3s-1) 

1980s 15  39  131   13  37  126   16  41  133  
2020s 19  44  118   17  43  114   21  48  129  
2050s 20  48  112   19  45  106   22  53  119  
2080s 22  50  111   20  49  102   24  56  121  

Change vs 1980s (%) 
2020s 32  16  -9   15  9  -14   39  23  0  
2050s 40  24  -12   31  16  -19   43  34  -9  
2080s 49  36  -16   29  18  -22   65  42  -4  
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Table 17. Median, minimum and maximum low (Q10), median (Q50) and high (Q90) Streamflow (m3s-1) and percent change (%) 
versus the 1980s in the 2020s, 2050s and 2080s in the Seymour, Cayoosh and Chilliwack of six GCMs run under RCP 8.5. Red 
indicates negative percentage change. 

   Median  Minimum  Maximum 
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M
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n 
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 L

ow
 

M
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ia
n 

H
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Se
ym

ou
r 

Streamflow (m3s-1) 

1980s 1 11 103  1 11 101  1 12 109 
2020s 2 11 104  2 9 100  3 14 108 
2050s 3 14 102  2 11 97  4 16 117 
2080s 2 19 93  1 14 85  4 26 97 

Change vs 1980s (%) 
2020s 105  -4  0   86  -17  -4   160  26  4  
2050s 171  21  0   88  -1  -3   211  49  12  
2080s 77  64  -9   7  22  -16   212  142  -7  

C
ay

oo
sh

 

Streamflow (m3s-1) 

1980s 2 8 56  1 7 54  2 8 57 
2020s 3 9 53  2 8 49  4 11 58 
2050s 4 11 51  3 10 49  5 12 54 
2080s 5 14 48  4 12 43  7 16 52 

Change vs 1980s (%) 
2020s 71  15  -4   46  -3  -11   124  47  4  
2050s 152  41  -6   109  23  -12   223  50  -3  
2080s 279  79  -15   180  38  -22   331  107  -3  

C
hi

lli
w

ac
k 

Streamflow (m3s-1) 

1980s 15 39 131  13 37 126  16 41 132 
2020s 20 46 115  16 42 113  22 50 125 
2050s 22 51 113  19 47 106  23 57 119 
2080s 23 52 113  20 47 101  24 57 117 

Change vs 1980s (%) 
2020s 33  22  -11   14  3  -14   50  29  -5  
2050s 47  35  -14   26  15  -20   63  45  -6  
2080s 55  37  -13   33  17  -23   84  46  -10  
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