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Preface 

The Pacific Climate Impacts Consortium (PCIC) has completed a Hydrologic Modelling project with the 
aim of quantifying the hydrologic impacts of projected climate change in select British Columbia 
watersheds. The main objective of the Hydrologic Modelling project is to provide future projections of 
the impacts of climate change on monthly and annual streamflow in three BC watersheds for the 2050s: 
the Peace, Campbell and Columbia, with particular emphasis on sites corresponding to BC Hydro power 
generation assets. The Hydrologic Modelling Project utilized an ensemble of climate projections derived 
from several global climate models (GCMs) forced with three emissions scenarios, statistically 
downscaled to high spatial and temporal resolution, to force a hydrologic model. The output of this model 
was subsequently used to assess and analyze the projected hydrologic response to climate change.  

Due to the scope of work required for this project, reporting is accomplished using two complementary, 
but independent, reports. The current report describes the methods used to derive the ensemble of 
statistically downscaled climate projections. It describes the GCM selection and statistical downscaling 
methodology in detail, discusses the validation of the statistical downscaling results, and presents general 
results of projected climate changes in British Columbia based on the derived projections. Although these 
climate projections were originally developed with the intent to generate hydrologic projections, we feel 
that these results are applicable to a broad range of impact studies and provide a valid understanding of 
the general consequences of projected climate change within British Columbia. Therefore, this report is 
also intended to make our results accessible to the wider scientific and operational audience. A 
companion report (Schnorbus et al. 2011)1 provides a thorough summary of the results of the hydrologic 
modelling, specifically for the three study areas, and focusing mainly on the methods employed and 
results obtained from the hydrologic modelling exercise itself. 

Analysis using updated data and peer-reviewed methodology has formed the basis of this work. 
Whenever possible, our intention was also to extend and improve upon existing results. Specifically, we 
have taken the opportunity to update the climate change projections originally presented by PCIC in the 
Climate Overview 2007 report (Rodenhuis et al. 2009). Consequently, much of the discussion in the 
current document is structured for direct comparison to the Climate Overview 2007 report, adopting the 
same regional delineation for summarizing results. Improvements include selecting GCMs based on their 
performance globally and regionally, bias-correction of the GCM output, and statistical downscaling of 
the resultant projections to high spatial resolution (1/16° or ~ 6km). The result is a suite of high-resolution 
projections of daily minimum temperature, maximum temperature and precipitation from an ensemble of 
23 climate projections encompassing a spatial domain that includes all of British Columbia, plus a small 
portion of the United States. A detailed description and inventory of forcing data is provided as an 
appendix to the companion report of Schnorbus et al. (2011). 

The Hydrologic Modelling project is part of a larger Hydrologic Impacts research program that has been 
underway at PCIC to address the consequences of climate change on water resources in British Columbia 
(Rodenhuis et al. 2007)2. The research plan is composed of four distinct projects: Climate Overview, 
Hydrologic Modelling (the subject of the current report), Regional Climate Modelling Diagnostics, and 
Synthesis. The objectives of the Climate Overview are to identify the scope and intensity of the threat of 
potential impacts to water resources by climate variability and change in British Columbia (Rodenhuis et 

                                                      
1 Schnorbus, M.A., K.E. Bennett, A.T. Werner and A.J. Berland, 2011: Hydrologic Impacts of Climate Change in 
the Peace, Campbell and Columbia Watersheds, British Columbia, Canada. Pacific Climate Impacts Consortium, 
University of Victoria, Victoria, BC, 157 pp. 
2 Rodenhuis, D., A.T. Werner, K.E. Bennett, and T.Q. Murdock, 2007: Research Plan for Hydrologic Impacts. 
Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC, 34 pp. 



vi 
 

al. 2009)3. The objective of the Regional Climate Modelling Diagnostics project is to validate the water 
balance of the Canadian Regional Climate Model (CRCM) in select BC watersheds, and to use the 
CRCM to simulate future climate and hydrologic conditions as a parallel effort to the Hydrologic 
Modelling project (Rodenhuis et al. 2011)4. Lastly, the purpose of the Synthesis project (Shrestha et al. 
2011)5 is to compare hydrologic projections from both the Hydrologic Modelling and the Regional 
Climate Modelling Diagnostics projects. 

 

Arelia T. Werner, Hydrologist, PCIC 
 

22 December 2010 

  

                                                      
3 Rodenhuis, D., K.E. Bennett, A.T. Werner, T.Q. Murdock and D. Bronaugh, 2009: Climate overview 2007: Hydro-
climatology and future climate impacts in British Columbia. Pacific Climate Impacts Consortium, University of 
Victoria, Victoria, BC, 132 pp. 
4 Rodenhuis, D., Braun, M., Music, B., Caya, D, 2011: Climate diagnostics of future water resources in BC 
watersheds, Hydrologic Impacts. Pacific Climate Impacts Consortium, University of Victoria, 74 pp. 
5 Shrestha, R.R., A.J. Berland, M.A. Schnorbus, A.T. Werner, 2011: Climate change impacts on hydro-climatic 
regimes in the Peace and Columbia watersheds, British Columbia, Canada. Pacific Climate Impacts Consortium, 
University of Victoria, Victoria, BC, 37 pp. 



vii 
 

BCSD Downscaled Transient Climate Projections for Eight Select 
GCMs over British Columbia, Canada 

About PCIC .................................................................................................................................................... i 

Acknowledgements ...................................................................................................................................... iii 

Preface .......................................................................................................................................................... v 

Executive Summary ..................................................................................................................................... ix 

Acronyms and Abbreviations ...................................................................................................................... xi 

1.  Introduction and Background ................................................................................................................ 1 

2.  Methods ................................................................................................................................................ 3 

2.1  Climate Projections ........................................................................................................................... 3 

2.2  GCM Selection .................................................................................................................................. 4 

2.2.1  Comparison of Selected Models Versus Full Ensemble by Region ......................................... 9 

2.3  Downscaling .................................................................................................................................... 16 

2.3.1  Bias Corrected Spatial Disaggregation (BCSD) ..................................................................... 17 

3.  Validation ............................................................................................................................................ 27 

3.1  Spatial Analysis of Monthly Average Conditions ........................................................................... 27 

3.2  Comparison of Daily Results via Indices ........................................................................................ 30 

4.  Results and Discussion ....................................................................................................................... 35 

4.1  Spatial - Multiple Scenarios ............................................................................................................ 35 

4.2  Spatial - CGCM3 A2 ....................................................................................................................... 41 

4.3  Time Series ...................................................................................................................................... 44 

5.  Uncertainty .......................................................................................................................................... 49 

6.  Conclusion .......................................................................................................................................... 51 

7.  Future Work ........................................................................................................................................ 53 

References ................................................................................................................................................... 55 

List of Figures ............................................................................................................................................. 61 

List of Tables .............................................................................................................................................. 63 

 

 

   



viii 
 

 

(BLANK) 

  



ix 
 

Executive Summary 

Projections of temperature and precipitation were required to drive a macro-scale hydrologic model, the 
Variable Infiltration Capacity model, to produce future projections of monthly streamflow in three BC 
watersheds (Columbia, Peace, Campbell) for the 2050s. Global Climate Models (GCMs) commonly 
operate at too coarse of resolution (~100 km) to be meaningful for assessing local-scale impacts. 
Statistical downscaling is one approach to translate large-scale information to a local-scale where 
relationships between large-scale variables in the GCM and local-scale climate variables in the observed 
record are used to adjust GCM projections to better represent local conditions. Before downscaling, 
GCMs were screened based on a number of performance metrics including performance over the globe, 
Northern Hemisphere, North America and western North America. This resulted in the selection of eight 
GCMs from the 23 available models: CGCM3.1 (T47); CSIRO-Mk3.0; CCSM3; GFDL-CM2.1; 
MIROC3.2 (medres); ECHAM/MPI-OM; UKMO-HadCM3; and UKMO-HadGEM1. All runs of these 
selected models under emissions scenarios B1, A1B and A2 were used where available (UKMO-
HADGEM1 did not have B1). These models are the same models which have been chosen by similar 
studies in North America. 

The Bias Corrected Spatial Disaggregation (BCSD) statistical downscaling technique was chosen for 
application in this case due to its extensive use, particularly in previous hydrologic modelling studies. In 
this approach, the monthly GCM data is bias-corrected against the gridded-observed data at the GCM 
grid-scale. The bias-corrected results are scaled to match the observed spatial pattern and re-sampled 
values from the gridded-observed record are adjusted to match the monthly GCM totals. As a result, 
projections of future precipitation, minimum temperature and maximum temperature at 1/16° were 
created. This technique was validated by comparing BCSD downscaled NCEP results to gridded-
observed data at the 1/16° grid-scale over BC for the validation period (1991-2000). For average 
temperature, median differences were -0.3°C in July and -0.6°C in December. For precipitation, BCSD 
downscaled NCEP results produced differences of -4% of gridded-observations based on the median in 
July and 0% in December. Downscaled NCEP results matched the explained variance of the gridded-
observations at the 99% confidence interval for several temperature and precipitation indices. 

Based on the median results of 23 climate change scenarios downscaled using BCSD, annual mean 
temperature is projected to increase by 2.3°C and annual precipitation is projected to increase by 8% on 
average over BC by the 2050s when compared to 1961-1990. Warming is projected to be greatest in 
winter and the least in spring and fall. Precipitation is projected to increase most in spring and decrease in 
summer on average over the province. Annually, the Okanagan, Columbia and Peace Basins are projected 
to have the greatest temperature increase, while the Northwest and Peace Basin are projected to have the 
largest precipitation increase. In the winter, the greatest warming is projected for the Peace Basin, while 
in summer the greatest warming is projected for the Okanagan. In the spring and fall, projected warming 
is relatively uniform across all regions. Precipitation is projected to increase the most out of any region in 
the Peace Basin in all seasons, except summer. Decreases are projected during the summer for the South 
Coast, Okanagan, Columbia, Fraser and North Coast. 

To test the benefits of using BCSD to downscale a GCM, BCSD results for CGCM3 A2 were compared 
to those of the un-corrected CGCM3 A2. The BCSD process was found to improve the ability of the 
CGCM3 model to represent the variability in precipitation across the province, but altered the temperature 
projections very little. The contribution to the range of uncertainty of GCMs versus emissions scenarios 
was investigated by downscaling several GCMs, run under several emissions scenarios. The range 
between temperature and precipitation projections for the 2050s was greater for the multiple GCMs than 
it was for emissions scenarios, both annually and seasonally. The range in seasonal response among 
models was greater than the range in annual response. The BCSD downscaled CGCM3 A2 scenario was 
the second warmest scenario after HADGEM A2 in winter, the third coolest in spring, summer and fall, 
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and the wettest (summer) or second wettest model out of the eight models selected for downscaling in all 
seasons. 
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1. Introduction and Background 

Global climate change due to anthropogenic greenhouse gas emissions will influence climate conditions 
in British Columbia. Expected warming and changing precipitation patterns are anticipated to have a large 
effect on the hydrology of western North America, with significant implications for water resources and 
the economy, infrastructure, and ecosystems. The hydrologic response to climate change may potentially 
impact many water-dependent resources and activities, including hydroelectric generation, municipal 
water supply, flood management, in-stream flow needs and fish habitat, irrigated agriculture, recreation 
and navigation. Naturally, as all these issues are relevant within BC, the degree to which local and 
regional hydro-climatology may be susceptible to the impacts of climate change is of considerable 
concern. Although climate change is taking place on a global scale, understanding the impacts of 
continued warming and changing of precipitation patterns on local- and regional-scale hydrology is most 
relevant to water resources planning and adaptation.  

Hydrologic projections require climate projections that are derived from global climate models (GCMs), 
the only tools we have available to us to explore the response of the global climate system to scenarios of 
future greenhouse gas emissions. GCMs provide a representation of the earth’s climate system based on 
first principles. They simulate differing responses to similar greenhouse gas forcing due to differences in 
implementation and the effects of natural internal low-frequency variability in the climate system. All of 
these models represent the inherent stochastic nature of the earth’s climate system. As a result, projections 
may not agree over the globe and can differ strongly, especially in smaller regions. GCMs are run at 
relatively coarse resolutions with grid spacing of a 100 km or more. Within BC, the regional climate 
response will be affected by large topographic relief, strong precipitation gradients and continentality. 
Statistical downscaling is an approach often adopted to translate large-scale information to a local scale, 
where relationships between large-scale variables in the GCM and local-scale climate variables in the 
observed record are used to adjust GCM projections to better represent local conditions. The statistical 
downscaling technique applied here, Bias Corrected Spatial Disaggregation (BCSD), both bias corrects 
and spatially disaggregates the raw monthly GCM output to provide more local and regional detail on 
potential climate change effects at the daily time step.  

As a requirement to provide driving data at the daily time step for hydrologic modelling, climate 
projections have been generated for the province as a whole at a spatial resolution of 1/16°. The climate 
projections have been produced from a suite of eight latest-generation global climate models driven by 
three emissions scenarios, including projections for the 2050s that range from a future with relatively less 
warming and more moistening (“cool/wet”) to relatively more warming and less moistening 
(“warm/dry”). This ensemble approach explicitly addresses both emissions and GCM uncertainty in the 
final projections. Although originally developed to provide the boundary conditions for hydrologic 
modelling, the spatial scope and detail of the resulting downscaled projections affords a unique 
opportunity to more generally assess and quantify the regional variation in projected temperature and 
precipitation trends in BC.  

This work also expands upon climate change projections originally produced by PCIC in the Climate 
Overview 2007 report (Rodenhuis et al. 2009). In Rodenhuis et al. (2009), GCMs were described and 
future projections for 15 of the 22 available models over BC were outlined. This was done in the native 
resolution of the models (~100 km). The current work will present a case for selecting a sub-set of those 
15 GCMs based on their performance historically in the region, compare the 1/16° (~6 km grids) BCSD 
results to those lower-resolution results presented in the Climate Overview, and discuss similarities in the 
range of uncertainty resulting from models versus emissions scenarios for the two approaches.  

The remainder of this report is organized into six sections that provide, respectively: 1) methods, 
including GCM selection and statistical downscaling, 2) validation of the statistical downscaling 
procedure for BC, 3) results and discussion of regional precipitation and temperature changes, 4) a 
discussion of uncertainty, 5) conclusions and 6) future work. Figures are included with the text and 
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captions are numbered by section. All references plus figure and table listings are located at the end of the 
report. 
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2. Methods 

2.1 Climate Projections 

The climate models of today rest on principles developed in the mid-20th century when efforts were 
primarily focused on representing the current climate, starting with numerical weather prediction models 
in the 1950s. The first models, which simulated atmospheres that resembled observations, were developed 
in 1965. At that time, those working on the problem concluded that in order to move forward they would 
need computers that were much more powerful than those that were available. Over time, computing 
power increased and ocean circulation became a part of models in the early 1980s, allowing the modelled 
ocean to exchange heat with the atmosphere. By 1988, modellers felt they had a basic grasp of the main 
forces and variations in the atmosphere and interest shifted from perfecting the representation of current 
climate to studying long-term climate and representing the “transient response” to changes in conditions 
(Weart 2008). Computing power was sufficient to allow modelling groups to confidently explore climate 
through time.  

In the 21st century we simulate the atmosphere with numerical models. As these developed from weather 
models they were first known as General Circulation Models that represent the physical processes in the 
atmosphere, ocean, cryosphere and land surface. Early in the 21st century General Circulation Models 
became known as Global Climate Models because they had started to incorporate much more than the 
circulation of the atmosphere as vegetation, ocean chemistry, ice sheets, and ecosystems were represented 
in the new suite of models (Weart 2008). As per the Intergovernmental Panel on Climate Change: 

 “GCMs depict the climate using a three dimensional grid over the globe, typically having a horizontal 
resolution of between 250 and 600 km, 10 to 20 vertical layers in the atmosphere and sometimes as many 
as 30 layers in the oceans.” (IPCC 2008)  

Those processes which occur at scales smaller than several hundred kilometers cannot be modelled at this 
scale and therefore their known properties must be represented with averages over the large-scale. For 
example, clouds must be addressed in this way. This is known as parameterization and is one source of 
uncertainty in GCM-based simulations of future climate. Feedback mechanisms such as water vapour and 
warming, clouds and radiation, ocean circulation and ice and snow albedo also must be parameterized. 
The way these processes are modelled differs from one group to another and results in different models 
having different responses to the same greenhouse gas forcing (IPCC 2008).  

The state of the art models of today include interactive clouds, oceans, land surface and aerosols. Some 
models also include detailed chemistry and the carbon cycle. These components are considered important 
for several reasons (Pope 2007):  

 Clouds impact how much radiation from the sun reaches the earth’s surface and how much 
warmth is trapped near the surface at night. There are many types of clouds and each has a 
different effect on the climate.  

 Oceans warm more slowly than land and they transport heat around the globe via ocean 
currents. 

 Land surface cover, such as trees or crops, impacts the albedo, or the amount of radiation 
reflected or absorbed by the earth’s surface. Darker areas absorb radiation and light areas, 
such as those covered in snow or ice, reflect it. 

 Aerosols are particles in the atmosphere that are produced naturally from volcanoes and forest 
fires and when fossil fuels are burned. Generally, aerosols have a cooling effect on climate by 
reducing the amount of sunlight reaching the surface and they change the properties of clouds, 
but their impact is relatively short-term. 
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 The amount of carbon dioxide that remains in the atmosphere depends on how much is taken 
up by the biosphere (plants, soils, phytoplankton) and some of these, such as soils, might not 
be able to take up CO2 under increased temperatures. 

It should be noted that Coupled Model Inter-comparison Project phase 3 (CMIP3) class models generally 
do not have land ice sheets nor do they represent the carbon cycle. 

Work developing GCMs in the last decade led the Intergovernmental Panel on Climate Change (IPCC) to 
conclude that human influence on climate had most likely been detected ( IPCC 2007a). This is because 
the pattern of atmospheric heating that GCMs computed when increased greenhouse gases were included 
was different from the pattern of other influences alone and models forced with increased greenhouse 
gases produced climates most similar to the observed record of climate change. Earlier, analysis of ice 
core records had provided an independent estimate of the amount of warming resulting from increasing 
CO2, otherwise known as the climate’s sensitivity. It showed roughly two degrees of warming for doubled 
CO2, which reinforced the findings of GCMs. However, this is only some of the evidence in support of 
recent climate change being a result of anthropogenic activities. Much more on this topic can be found in 
Hegerl et al. (2007). 

Uncertainty is an inherent aspect of climate projections. There are several steps in the modelling process 
that add uncertainty. Projections of future emissions trajectories hold some of the largest uncertainty over 
longer time horizons (i.e., out to 2100). For the 2050s period, climate projections obtained under three 
different emissions trajectories (A1B, A2 and B1) are relatively indistinguishable and the range in 
response is attributable to different models (Bennett et al. 2009). Specifically, projection uncertainty 
stems from boundary conditions (e.g., greenhouse gas concentrations and radiative forcing), structural 
uncertainty (e.g., which processes are included, which processes are excluded, and how small-scale 
phenomena are parameterized), model numerics (temporal and spatial resolution, type of grid, numerical 
algorithms, etc.), parameter uncertainty, and to a lesser degree, errors and uncertainty in initial conditions 
(Tebaldi and Knutti 2007). On smaller spatial scales and shorter time horizons, initial conditions can 
become the more dominate source of uncertainty over others mentioned above (Hawkins and Sutton 
2009). Uncertainty in observational data also makes it difficult to assess the strengths and weaknesses of 
the available models. To explore a large portion of the emissions and GCM uncertainty we have selected 
multiple GCMs following three emissions scenarios that cover a large range in wet/dry and warm/cool 
combinations using a single result (run 1) from an ensemble of different GCMs. 

2.2 GCM Selection 

Seventeen modelling centers participated in modelling future climate for the Intergovernmental Panel on 
Climate Change (IPCC) Fourth Assessment Report (AR4; Meehl et al. 2007). At some centers, more than 
one model was applied as the centers tried different resolutions or parameterizations of the same model 
(Table 2-1). Data from 25 GCMs have been collected in the CMIP3, which is archived at the Program for 
Climate Model Diagnosis and Inter-comparison at Lawrence Livermore National Laboratory (LLNL) 
making the data publicly accessible (PCMDI 2010). It is the recommendation of the IPCC that all 
available models should be used for climate change studies as no one model has been identified as more 
robust (Randall et al. 2007). That being said, some models probably can be excluded and/or need to be 
excluded to make the ensemble number manageable for users. With multiple models being run multiple 
times under multiple emissions scenarios, there are upwards of ~144 available scenarios, making it 
unreasonable for researchers to incorporate all available scenarios into their analysis. Translating coarse-
scale data to the local-scale requires statistical downscaling that is computationally demanding to 
complete for all available GCMs. Furthermore, some models appear to not be representative at regional 
scales when compared over the historical record to gridded-observational data, although they may have 
performed well globally (Overland and Wang 2007). Faced with these challenges, some studies 
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conducted at the regional scale have selected a sub-set of models from the CMIP3 suite to avoid outliers 
and reduce the range in possible futures based on the performance of GCMs when compared to observed 
historical data (e.g., Overland and Wang 2007; Hamlet et al. 2010). Under these tests, model ranking 
depends on the metric used, and when several credibility measures are combined, the overall tendency is 
for models to perform comparably (Brekke et al. 2006). It should be noted that a model’s skill in 
reproducing historical climate normals speaks somewhat to its reliability in a given region, but does not 
reflect how a given model will respond to future greenhouse gas forcing (Hamlet et al. 2010). Response 
of a given model to a greenhouse gas forcing is referred to as its sensitivity, which differs between models 
and is usually measured in terms of change in temperature resulting from a given increase in carbon 
dioxide. A universal set of performance metrics has not been established (Gleckler et al. 2008). Instead 
researchers are encouraged to outline their rationale to allow for reproducibility (Tebaldi, pers comm.). 
The following outlines the rationale applied for this study. 

Various studies have shown that a multi-model average yields better prediction and compares more 
favorably to observations than any single model when compared over multiple variables (Knutti et al. 
2010). The multi-model average tends to be an improvement over individual models because the bias in 
one model is cancelled out by another. Incorporating information from different models contributes to the 
increase in skill as each model has different strengths in representing different facets of the climate 
(Pierce et al. 2009). Yet bias cannot be completely removed, even when all models are included. The 
amount of bias that can be removed on average over the globe for randomly selected models is 
significantly reduced after including five models and levels off after 10 (Knutti et al. 2010). When the 
“best” performing models are analyzed in the same way, the RMS bias removed matches or exceeds that 
for randomly selected models after six or eight models, depending on the season. This has been 
reaffirmed by others working in the western US, who have found that model skill asymptotes after 
including approximately five different models (Pierce et al. 2009), and also in BC in a yet unpublished 
study by Valentina Radic. Thus, an average from five to eight “best” performing models should be most 
comparable with observations and avoids processing of all available GCMs while removing a similar 
amount of bias.  

Averaging can be based on “one model, one vote” or can be weighted, based on past relationships 
between forecasts and verifications using Bayesian methods, although defining a robust weighting system 
is difficult (Pierce et al. 2009; Knutti et al. 2010). Therefore, models will be screened based on their 
historical performance, eliminating those which do not pass our criteria and giving those which remain 
equal weighting. The statistical paradigm that informs our interpretation of the final climate projection 
ensemble can be formally classified as “indistinguishable-weighted” (Tebaldi, pers. comm.). It has been 
argued that the reliability of model projections may be improved if GCM results are weighted according 
to some measure of skill (i.e., GCM results are not treated equally; Amman and Hargreaves 2010; Knutti 
et al. 2010; Tebaldi and Knutti 2007). Furthermore, climate projections from the final ensemble of 
selected GCM-scenario pairs are treated as statistically indistinguishable and given equal weight (Annan 
and Hargreaves 2010 and Knutti et al. 2010). In such a case, it is taken that “the truth is drawn from the 
same distribution as the ensemble members, and thus no statistical test can reliably distinguish one from 
the other” (Annan and Hargreaves 2010). Each ensemble member is considered indistinguishable from all 
possible outcomes of the earth’s chaotic processes (Knutti et al. 2010). This concept has also been 
described as “exchangeability” (Rougier et al. 2010). In the following section, we evaluate the 
performance of 22 available GCMs from CMIP3 using a variety of performance metrics based on work 
by extramural groups (e.g., Gleckler et al. 2008; Pincus et al. 2008; Pierce et al. 2009; Moore et al. 2010). 
Models are screened according to their performance on both the global and regional scales, and although 
temperature and precipitation will be the only variables used from the GCMs, they are screened for 
several variables. This is because models are thought to be more easily adjustable to match historical 
temperature and precipitation than other variables. Therefore, representation of other variables was taken 
as a demonstration of how well the model is able to represent the climate as a whole. 
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Table 2-1. Model identification, originating group, and atmospheric resolution. 

IPCC ID Centre and Location Atmospheric 
Resolution

BCCR-BCM2.0 Bjerknes Centre for Climate Research (Norway) T63 L31
CGCM3.1(T47) Canadian Centre for Climate Modelling and Analysis (Canada) T47 L31
CGCM3.1(T63) T63 L31
CSIRO-Mk3.0 CSIRO Atmospheric Research (Australia) T63 L18
CNRM-CM3 Meteo-France, Centre National de Recherches Meteorologiques (France) T42 L45

ECHO-G 
Meteorological Institute of the University of Bonn, Meteorological 
Research Institute of KMA, and Model and Data group (Germany and 
Korea) 

T30 L19 

GFDL-CM2.0 US Dept. of Commerce, NOAA Geophysical Fluid Dynamics Laboratory 
(USA) 

N45 L24
GFDL-CM2.1 N45 L24
GISS-AOM 

NASA/Goddard Institute for Space Studies (USA) 
90 x 60 L12

GISS-EH 72 x 46 L17
GISS-ER 72 x 46 L17
FGOALS-g1.0 LASG/Institute of Atmospheric Physics (China) 128 x 60 L26
INM-CM3.0 Institute for Numerical Mathematics (Russia) 72 x 45 L21
IPSL-CM4 Institut Pierre Simon Laplace (France) 96 x 72 L19
MIROC3.2(medres) Center for Climate System Research (The University of Tokyo), National 

Institute for Environmental Studies, and Frontier Research Center for 
Global Change (JAMSTEC) (Japan) 

T42 L20

MIROC3.2(hires) T106 L56 

MRI-CGCM2.3.2 Meteorological Research Institute (Japan) T42 L30
ECHAM5/MPI-
OM 

Max Planck Institute for Meteorology (Germany) T63 L32 

CCSM3 National Center for Atmospheric Research (USA) T85 L26
PCM T42 L18
UKMO-HadCM3 Hadley Centre for Climate Prediction and Research  Met Office (UK) 96 x 72 L19
UKMO-HadGEM1 N96 L38
*T#/N#/# x # refer to the spatial resolution of the surface grid, L# refers to the number of vertical levels  

 

Models are screened on the global-scale based on results from Gleckler et al. (2008). As GCMs are 
designed to replicate the global climate system, poor performance of the model over the historical period 
was assumed to indicate problems that might lead to erroneous results on the regional-scale. At the global 
scale, models were evaluated based on their relative errors. The relative error is defined, for a given 
model and a given climate field, as the root mean square (RMS) error between a simulated field and a 
corresponding reference dataset (observations) subtracted by the ‘typical’ model error, all divided by the 
‘typical’ error. The ‘typical’ error is defined as the median of the RMS error calculations. The relative 
error is a measure of how well a given model (with respect to a particular dataset) compares with the 
typical model error. For example, if the relative error has a value of -0.2, then the model's RMS error is 
20% smaller than the ‘typical’ model. Observational datasets differed by variable, but were primarily 
sourced from re-analysis (ERA40, European Centre for Medium-Range Weather Forecasts and 
NCEP/NCAR, National Centers for Environmental Prediction-National Center for Atmospheric Research, 
or Earth Radiation Budget Experiment (ERBE)/Clouds and the Earth’s Radiant Energy System (CERES) 
datasets (Gleckler et al. 2008). For monthly mean climatological data such as temperature, total 
precipitation, and geopotential height, the RMS error statistic accounts for errors in both the spatial 
pattern and the annual cycle. Gleckler et al. (2008) calculated relative errors for all 22 GCMs from 
CMIP3 and 26 climate fields over 1980-1999. Models whose relative error was 0.5 or greater for any 
variable were considered to perform poorly over the globe. 

To assess models at the more regional scale, we referred to work completed by Radic (in Moore et al. 
2010) who evaluated all 22 CMIP3 GCMs at the regional (North America) and sub-regional (western 
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North America) scale. The North American Regional Reanalysis (NARR) data (~32 km) formed the basis 
for comparison, but was interpolated to 10XNARR resolution (~320 km) to be more comparable to GCM 
resolution (~100 km). Climate fields from all 22 GCMs were interpolated to 10xNARR resolution and 
compared to NARR over 1980-1999. Model performance was analyzed on two spatial domains: 'large' 
domain, equivalent to the original NARR domain, and 'small' domain that roughly covers the NW corner 
of the ‘large’ domain. Relative model errors, variance ratios, and model performance indexes for these 
two domains and several climate fields of interest, including temperature and specific humidity at 850 
hPa, geopotential height at 500 hPa and 850 hPa, sea level pressure and precipitation, were calculated. 
Two model performance indexes were adapted from Gleckler et al. (2008) and applied over these regional 
domains: the 'Model Climate Performance Index' (MCPI) and the ‘Model Variability Index’ (MVI). With 
the MCPI each model's relative error was averaged across the climate fields of interest. Model simulation 
of inter-annual variability was examined against variances of monthly mean anomalies, computed relative 
to the monthly climatology for the period 1980-1999 with the MVI. For each GCM and climate field of 
interest, smaller values indicated better agreement with the reference data. Models in the bottom place 
according to Radic’s (in Moore et al. 2010) set of statistical metrics (relative error, MCPI and MVI) for 
any climate variable and spatial domain were considered to have poor performance regionally. 

Radic (in Moore et al. 2010) also analyzed GCMs using Self-Organizing Maps (SOMs) for Sea Level 
Pressure (SLP) to test the GCMs’ replication of synoptic patterns present in NARR. An SOM is a type of 
unsupervised Artificial Neural Network suited to pattern recognition and classification, similar to cluster 
analysis. In Radic’s (2010) analysis, the input data consisted of daily SLP anomalies from NARR for each 
of the 21 available GCMs (data for HADGEM1 was not available). SOM training was applied on a 
seasonal basis, producing SLP anomaly (Pa) patterns that are characteristic for each season (DJF, MAM, 
JJA, SON)  and was performed independently for the 'large' and 'small' spatial domains. Different SOM 
sizes were chosen, which provided reasonable compromises between detail and interpretability. The size 
or number of nodes of the SOM reflects the number of classes to which the patterns are binned. Based on 
the sizes 4x3, 4x4 and 5x4 the number of classes defined were 12, 16 and 20, respectively. Ideally, a 
model would recreate the same synoptic patterns that are seen in the real atmosphere, here represented by 
NARR, and would have the same frequency of occurrences for each of the SOM nodes. Models that did 
not have a significant correlation between their node frequencies and those from NARR for at least one 
season, over both the ‘large’ and ‘small’ domain, and all SOM sizes were given a low rank. 

Results from the studies described above were used to guide the GCM selection. Table 2-2 provides a 
summary of how each model performed under seven decision factors. To make the evaluation consistent, 
only the first run for GCMs that have multiple runs for each climate scenario were evaluated. Ideally, 
enough model realizations must be chosen to account for the effects of natural internal variability within a 
model (Pierce et al. 2009). However, multiple realizations are not equally available from all centers, and 
resources to work with these vast datasets were limited. Additionally, a collection of models from 
multiple centers will sample both internal variability and structural differences provided it includes a 
sufficient number of models. 
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Table 2-2. Selection of GCMs 

 GCM Decision Factors 1) Monthly GCM data for 20th and 21st century were fully 
accessible for the model (archived at the LLNL). 

2) Model’s relative error for 1980-1999 annual cycle 
climatology calculated in Gleckler et al. (2008) was not 
greater than 0.5 for any considered climate variable over 
the full global domain. In other words, models with 
relative errors larger than 50% from the ‘typical’ error 
(median of relative errors across the 22 GCMs) were 
excluded from the ensemble. 

3) Model was in the top 10 according to the MCPI over the 
Northern Hemisphere in Gleckler et al. (2008). 

4) When ranked according to Radic’s (in Moore et al., 
2010) set of statistical metrics (relative error, MCPI and 
MVI) the model was not in the bottom place for any 
climate variable and spatial domain. 

5) According to GCM evaluation with SOM, the model 
produced node frequencies that were significantly 
correlated to node frequencies from NARR for at least 
one season, over both ‘large’ and ‘small’ domain, and all 
SOM sizes. In other words, models with no significant 
correlation for any season were excluded from the 
ensemble 

6) Model had been used for the Climate Overview 
(Rodenhuis, et al. 2007). 

7) Model was part of the North American Regional Climate 
Change Assessment Program (NACCAAP). 

1 2 3 4 5 6 7 
1 BCCR-BCM2.0  A   A A A  

2 CGCM3.1(T47)*  A A A A A A A

3 CGCM3.1(T63)  A A A A A   
4 CSIRO-Mk3.0*  A A A A A A  
5 CNRM-CM3  A   A A A  
6 ECHO-G   A  A A A  
7 GFDL-CM2.0  A A  A A A A

8 GFDL-CM2.1*  A A A A A A A

9 GISS-AOM  A   A    
10 GISS-EH  A       
11 GISS-ER  A A   A A  
12 FGOALS-g1.0  A       
13 INM-CM3.0  A    A A  
14 IPSL-CM4  A     A  
15 MIROC3.2(medres)*  A  A A A A  
16 MIROC3.2(hires)  A A A A A   
17 MRI-CGCM2.3.2  A    A A  
18 ECHAM/MPI-OM*  A A A A A A  
19 CCSM3  A A A   A A

20 PCM  A       
21 UKMO-HadCM3*  A A A A A A A

22 UKMO-HadGEM1   A A  ^   
^ Not accessible for UKMO-HadGEM1. Red = 7/7; Burgundy = 6/7; Grey = 5/7; Black < 5/7. Bold and * = Selected. 

 

CGCM3.1(T47), GFDL-CM2.1 and UKMO-HadCM3 were selected as they passed on all factors (Table 
2-2). Others met several of the criteria, but not all. To fill out our selection to a total of five to seven 
models to remove the most amount of bias, four other models were selected. CSIRO-Mk3.0 and 
ECHAM/MPI-OM were included because they passed on six out of seven decision factors. Both are 
strong models according to the performance metrics we screened the models against. The only factor they 
did not meet was being included in NARCCAP, decision factor 7. MIROC3.2(medres) was included 
because it passed on five out of seven decision factors, performing well over the globe and locally, except 
for temperature at 200 hPa where its relative error for 1980-1999 annual cycle climatology calculated in 
Gleckler et al. (2008) was greater than 0.5 over the full global domain. CCSM3 was included because it 
passed on five out of seven decision factors, including being part of NARCCAP, although it did fail to 
pass the screening criteria at the regional scale (decision factors 4 and 5). Regionally, CCSM3 ranked 
between 11th and 20th for the large and small domain for all variables, so overall it was not a very strong 
model based on work by Radic (in Moore et al. 2010). However, it had been used by several other groups 
such as NARCAAP and Hamlet et al. (2010) and performed well over the globe (Gleckler et al. 2008). 
The UKMO-HadGEM1 model was chosen, even though it met less than five out of seven factors because 
it has been used for other studies (Murdock and Flower 2009; Nelson 2010; Flower et al., submitted). 
Additionally, UKMO-HadGEM1 was in the bottom place only for precipitation over North America, for 
all other variables it was ranked in the top five over the large and small domain, including MCPI and MVI 
based on Radic (in Moore et al. 2010) and had the lowest relative error after the multi-model ensemble 
over the Northern Hemisphere (Gleckler et al. 2008). Where fewer than six decision factors were met 
models were generally not selected. 
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When more than one model from the same modelling centre performed well according to the screening 
criteria we chose one model to avoid oversampling from the same model population to reduce artificial 
coherencies between models that might contaminate the statistics in the ensemble (Leduc and Laprise 
2010). The model was selected based on which was the stronger of the two as judged by its performance 
globally and regionally, or if it had been used by other studies in the region. The following centers 
contributed more than one model: the Canadian Centre for Climate Modelling and Analysis, Canada 
(CGCM3.1(T47) and CGCM3.1(T63)); US Department of Commerce, NOAA Geophysical Fluid 
Dynamics Laboratory, USA (GFDL-CM2.0 and GFDL-CM2.1); the NASA/Goddard Institute for Space 
Studies, USA (GISS-AOM, GISS-EH and GISS-ER); Centre for Climate System Research (The 
University of Tokyo), National Institute for Environmental Studies, and Frontier Research Center for 
Global Change, Japan (MIROC(hires/T106) and MIROC(medres/T42)) and the Hadley Centre for 
Climate Prediction and Research, Met Office, UK (HadCM3 - HadGEM1).  CGCM3 T47 - CGCM3 T63 
and GFDL CM2.0 - GFDL CM2.1 were found to be similar to each other when compared to the 
distribution of the root-square differences for all random pairs, especially over western North America 
(Leduc and Laprise 2010) and are likely redundant when applied in the same study. The GISS models did 
not meet more than five out of the seven decision factors and thus were not selected for this study. 
MIROC(hires/T106) - MIROC(medres/T42) and HadCM3 - HadGEM1 diverged over western North 
America, so applying more than one to the study might have merit (Leduc and Laprise 2010). 
MIROC(medres/T42) was chosen here over MIROC(hires/T106) because it was shown to be a strong 
model in other studies (Walsh et al. 2008) and was selected as one of the 15 selected models in the 
Climate Overview report (Rodenhuis et al. 2009). HadCM3 and HadGEM1 were included in our selection 
because they were divergent and both had been used for several studies across North America (Bonsal et 
al. 2003; Murdock and Flower 2009; Hamlet et al. 2010; Nelson 2010; Flower et al., submitted).   

The final ensemble consisted of the following eight models and emissions scenarios, listed alphabetically: 

Global Climate Model Emissions Scenarios
1. CGCM3.1(T47) B1, A1B, A2 
2. CSIRO-Mk3.0 B1, A1B, A2 
3. CCSM3 B1, A1B, A2 
4. GFDL-CM2.1  B1, A1B, A2 
5. MIROC3.2(medres) B1, A1B, A2 
6. ECHAM/MPI-OM B1, A1B, A2 
7. UKMO-HadCM3 B1, A1B, A2 
8. UKMO-HadGEM1 A1B, A2 

2.2.1 Comparison of Selected Models Versus Full Ensemble by Region 

Our aim is to use the 21st century climate projections from these eight models, run under atmospheric 
greenhouse gas concentrations from three SRES scenarios to sample the uncertainty in future projections 
due to emissions scenarios (A2, A1B, and B1) parameterization and initial conditions (IPCC 2007b). 
Projections from these models will vary by region. Therefore, the selected models are identified for the 
three basins of interest in BC (Figure 2-1) in scatter plots of temperature vs. precipitation change in the 
2050s (2041-2070) as a difference from 1961-1990 to demonstrate the range of selected models versus 
the full suite (Figure 2-2, Figure 2-3 and Figure 2-4). The median values of the selected and full suite are 
shown for the temperature and precipitation changes in each case. Basins investigated were the Campbell 
(a 1,200 km2 basin in coastal BC on Vancouver Island), the Peace (a 101,000 km2 basin in north-eastern 
BC), and the Columbia (a 104,000 km2 basin in south-eastern BC), which drains to the US. The range in 
projected temperature or precipitation change varies by basin. The greatest increases in temperature and 
precipitation are projected for the Peace Basin in winter and summer (Figure 2-3). Temperatures are 
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projected to increase while precipitation is projected to decrease in summer for the Campbell Basin 
(Figure 2-2).  

To explore the impact of picking eight GCMs from the 22 available, the mean, median, minimum and 
maximum values of the full ensemble and the selected subset are presented in Table 2-3. Since the 
HADGEM1 model met only two of the seven decision factors, results are shown for the ensemble both 
with and without this model. In all three basins, the median projected temperature and precipitation 
change in the 2050s of the selected models is similar to the median for all available models. The range of 
the selected models is narrower than all available models in all seasons, which reflects how the minimum 
projected temperature increase is greater or the maximum projected temperature of the selected models is 
less than that of all available models. An exception is summer and fall when maximum projected 
temperature increase in the selected GCMs equals that for all available GCMs. The median projected 
temperature increase of the selection that includes HADGEM1 tends to be warmer than the selection that 
does not in summer and fall, but tends to be cooler in winter and spring for most of the basins. In the 
winter and spring, the range of projected changes in precipitation of the selected models is narrower than 
that of all available models, but is almost equivalent in summer and fall. The median projected 
precipitation changes of the selected models are within a few percent of those for all available models. 
Including or not including HADGEM1 in the ensemble has minimal effect on precipitation projections in 
any of the seasons for any of the basins. 
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Figure 2-1. Study areas of the hydrologic modelling project. 
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Table 2-3. Projected changes in temperature for the 2050s versus 1961-1990 by season for the Campbell, Peace and 
Columbia for all available scenarios (All), the 23 selected scenarios (Sel 1) and for the 21 selected scenarios when 
UKMO_HadGEM1 is excluded from the selection (Sel 2). 

 Temperature 

Winter Spring Summer Fall 
All Sel 1 Sel 2 All Sel 1 Sel 2 All Sel 1 Sel 2 All Sel 1 Sel 2

Campbell Min 0.3 0.7 0.9 0.4 0.7 0.7 0.9 1.2 1.2 0.4 1.3 1.3
 Max 4.9 2.9 2.9 4.6 4.1 4.1 4.7 4.7 4.7 3.5 3.5 3.5
 Mean 1.9 1.9 2.0 1.7 1.9 1.9 2.2 2.5 2.4 1.9 2.1 2.0
 Med 1.9 2.0 2.1 1.6 1.8 1.7 2.2 2.4 2.2 1.8 2.0 1.8

Peace Min 0.2 0.5 1.6 0.4 1.0 1.0 0.8 1.2 1.2 0.4 1.2 1.2
 Max 5.7 4.1 4.1 4.6 3.0 3.0 4.0 4.0 4.0 3.9 3.9 3.9
 Mean 2.7 2.7 3.0 1.9 1.9 2.0 2.0 2.3 2.2 2.0 2.2 2.2
 Med 2.6 2.8 3.2 1.9 1.9 2.0 1.9 2.1 2.0 2.0 2.1 2.1

Columbia Min 0.2 1.2 1.2 0.4 0.9 0.9 1.1 1.3 1.3 0.6 1.4 1.4
 Max 4.4 3.6 3.6 4.2 3.3 3.3 5.0 5.0 5.0 3.9 3.9 3.9
 Mean 2.3 2.3 2.4 1.9 2.0 2.0 2.6 3.0 2.8 2.1 2.3 2.3
 Med 2.1 2.2 2.2 1.8 1.8 2.0 2.4 2.9 2.6 2.0 2.4 2.1
 

 

Table 2-4. Projected changes in precipitation for the 2050s versus 1961-1990 by season for the Campbell, Peace and 
Columbia for all available scenarios (All), the 23 selected scenarios (Sel 1) and for the 21 selected scenarios when 
UKMO_HadGEM1 is excluded from the selection (Sel 2). 

 Precipitation 

Winter Spring Summer Fall 
All Sel 1 Sel 2 All Sel 1 Sel 2 All Sel 1 Sel 2 All Sel 1 Sel 2

Campbell Min -10 -8 -8 -10 -4 -2 -44 -44 -44 -8 -8 -2
 Max 26 13 13 25 25 25 13 12 12 23 21 21
 Mean 6 5 5 7 8 9 -15 -16 -13 8 7 9
 Med 6 4 5 6 7 8 -15 -14 -12 10 7 8

Peace Min -9 6 6 -1 -1 -1 -18 -18 -18 -3 -2 -2
 Max 26 26 23 31 22 22 19 13 13 25 24 24
 Mean 11 14 13 11 13 13 1 1 1 11 11 11
 Med 11 13 12 10 14 14 1 3 3 11 10 12

Columbia Min -8 -1 -1 -4 -4 -4 -27 -27 -27 -5 -5 -5
 Max 24 20 18 24 22 22 13 13 13 20 20 20
 Mean 8 9 8 10 12 13 -8 -8 -7 7 8 9
 Med 10 10 6 9 12 12 -7 -7 -5 7 8 9
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Figure 2-2. Projected temperature (°C) and precipitation (%) in the 2050s in winter (a) and summer (b) as a 
difference from 1961-1990 in the Campbell Basin based on GCM output. Selected models are shown with grey 
infilling. 

a) 

b) 



14 
 

 

Figure 2-3. Projected temperature (°C) and precipitation (%) in the 2050s in winter (a) and summer (b) as a 
difference from 1961-1990 in the Peace Basin based on GCM output. Selected models are shown with grey infilling. 

b) 

a) 
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Figure 2-4. Projected temperature (°C) and precipitation (%) in the 2050s in winter (a) and summer (b) as a 
difference from 1961-1990 in the Columbia Basin based on GCM output. Selected models are shown with grey 
infilling. 

a) 

b) 
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2.3 Downscaling 

Although many of the major components of the earth system are represented in GCMs, including ocean, 
atmosphere, and land surface, they are at scales such that fine topographic features such as mountain 
ranges or land-water interfaces that impact climate are not resolved. These features have an effect on the 
current climate and on how a region will be impacted by climate change. For example, although 
temperatures are projected to increase in a region, high elevation areas may also receive more 
precipitation and might remain cold enough to have precipitation continue to fall as snow versus rain. In a 
GCM, this type of elevation gradient would not be well represented. For example, a grid tile where there 
is a true elevation range of 200 m to 1200 m might be represented with an average elevation of 500 m in 
the model and the temperature would be represented with one average value over the entire tile area. 
Downscaling is a tool for relating information from coarse-scale GCMs (several ~100 km grids) to 
smaller scales (~10 km grids or specific locations) to more accurately represent regional variation in 
climate change. 

Two main forms of downscaling exist: statistical and dynamical. Statistical downscaling draws upon 
empirical relationships between observed large-scale phenomena that are well simulated by models and 
observed variations in a target variable at the location of interest. Dynamical downscaling refers to a 
higher resolution climate model being embedded within a GCM, such as a regional climate model (RCM) 
or a limited-area model. The higher resolution model is forced at the boundary by the GCM and has 
parameterized physical atmospheric processes at this higher resolution. Some advantages of statistical 
downscaling over dynamic downscaling are that it is comparatively cheap and computationally efficient, 
based on standard and accepted statistical procedures. It is also able to directly incorporate observations 
(Wilby and Wigley 1997 and Fowler et al. 2007). Disadvantages of this approach are that it requires long 
and reliable observed historical data series for calibration, depends on the chosen predictors, does not 
include feedbacks in the climate system, assumes the established relationship between the predictor and 
predictand will hold in the future, and is affected by biases in the underlying GCM. Some non-linear 
forms of statistical downscaling, such as neural networks, include feedbacks between temperature and 
precipitation indirectly. The strength of the dynamical approach is that it produces responses based on 
physically consistent processes and produces finer resolution information from GCM-scale output that 
can resolve atmospheric processes on a smaller scale. However, it is computationally intensive, which 
limits the number of scenarios that can be downscaled and is strongly dependent on the GCM boundary 
forcing (Wilby and Wigley 1997 and Fowler et al. 2007). 

This report focuses on statistical downscaling as it is applied to provide driving data at 1/16° spatial 
resolution for the VIC hydrologic model. As noted above, statistical downscaling is less computationally 
demanding than dynamical downscaling, which makes it advantageous for exploring the range of 
uncertainty due to multiple GCMs and emissions scenarios. Several approaches to statistical downscaling 
have been developed over the last couple of decades (Wilby and Wigley 1997; Xu 1999; Fowler et al. 
2007). These techniques range from the simple delta-method to the more complex canonical correlation 
analysis (Fowler et al. 2007). Several inter-comparison studies of statistical downscaling techniques have 
been completed (Wilby and Wigley 1997; Xu 1999; Fowler et al. 2007; Maraun et al. 2010). Few 
techniques have been compared over the same spatial domain, using the same predictor variables and 
predictands, or against the same assessment criteria. This makes direct comparison of their relative 
performance difficult (Fowler et al. 2007). However, the bias-correction of climate model data was found 
to be an important aspect of using GCM or RCM data (Wilby et al. 2000; Hay and Clark 2003). The Bias 
Corrected Spatial Disaggregation (BCSD) statistical downscaling approach has been widely used and 
tested, especially in western North America (Wood 2002; Wood et al. 2004; Salathé 2005; Salathé et al. 
2007; Maurer and Hidalgo 2008; Mote and Salathé 2009). It has been used extensively with the VIC 
hydrologic model. For these reasons, this technique has been used for this study and is described in detail 
below. 
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2.3.1 Bias Corrected Spatial Disaggregation (BCSD) 

BCSD originated from the requirement to downscale ensemble climate model forecasts as input to a 
macro-scale hydrologic model to produce runoff and streamflow forecasts at spatial and temporal scales 
appropriate for water management (Wood et al. 2002). As the name implies, GCM data are bias corrected, 
downscaled to 1/8° or 1/16° horizontal resolution and then disaggregated to a daily time step for input to a 
hydrologic model, such as the Variable Infiltration Capacity (VIC) model (Liang et al. 1994). The BCSD 
method falls within a unique class of techniques where the predictor and predictand variables are the same 
(Rummukainen 1997), albeit of different scale. In this case, relationships between large-scale averages of 
temperature and precipitation and local-scale temperature and precipitation are used to develop empirical 
statistical relationships. BCSD is applied to monthly GCM data because daily data from GCMs was 
largely unavailable at the time this technique was developed (Wood et al. 2002). Additionally, daily GCM 
data would be much more cumbersome to process and challenging to bias correct due to mismatches 
between days of precipitation occurrence in GCMs versus actual occurrence (Wood et al. 2002), and the 
uncertainties in matching presence or absence of precipitation in the GCM to observed (Wehner 2010). 
The downscaling is performed in three steps: a) bias correction of the GCM fields using quantile 
mapping; b) “local scaling” of the corrected fields to the VIC grid, using calibration data from the 
overlapping period; and c) resampling of the daily historic record (at the VIC grid-scale) conditioned on 
the monthly averages of the locally scaled fields. Over the years, the BCSD method has been modified 
and adjusted to improve its ability to provide data for modelling projected changes to streamflow. The 
following will describe the approach as it has been applied in this study, taking time to note modifications 
that have been employed primarily by Dr. Eric Salathé (Jr.) of the University of Washington (Hamlet et 
al. 2010). 

Before describing the technique step by step we will discuss the necessary input data. GCMs are bias 
corrected against gridded observations. These include gridded daily maximum and minimum temperature 
and precipitation at the spatial resolution of 1/16°, generated following Maurer et al. (2002) and Hamlet 
and Lettenmaier (1995). Daily station observations of minimum and maximum temperature and 
precipitation are collected from several agencies in Canada and the US, adjusted for the effects of 
topography with PRISM climatology for western Canada (Daly et al. 1994), interpolated using Climate 
Western North America (Climate WNA; Hamann and Wang 2005, Wang et al. 2006), and temporally 
homogenized to reduce any spurious trends or artifacts using long-term datasets. Daily wind speed 
surfaces are generated by re-gridding estimates of 10-m wind speed from the National Centers for 
Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay 
et al. 1996). See Schnorbus et al. (2011) for more details. This dataset will be referred to as the gridded-
observed record. Average monthly minimum and maximum temperature and total monthly precipitation 
values of the gridded-observed record are produced in a pre-processing step of BCSD. As described 
above, due to the space needed to store large daily datasets, the inability of GCMs to represent daily 
patterns (presence or absence) of precipitation, and the uncertainties in matching percentiles in daily 
precipitation in GCMs to those in observed, or gridded-observed products, monthly GCM data forms the 
input for the BCSD technique. The strengths and limitations of the BCSD approach will be discussed 
below, but first we will outline the key steps in the technique. NCEP/NCAR reanalysis has a resolution 
~1.9° comparable to that of GCMs; therefore it will be used as a surrogate GCM to demonstrate the steps 
in BCSD using 1950 to 1990 as the calibration period. Validation of this method over 1991 to 2000 will 
be described in the following section. 
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Steps in BCSD downscaling 

Step – (1) – For each grid cell of a specific GCM and each calendar month we have a series of monthly 
mean temperatures for each year, t, of the base climate simulation, . Additionally, we have a 
time series of the gridded observed data (1/16°) aggregated to the resolution of the climate model (i.e., 
~1.9° as for NCEP) in question for each month, . For NCEP, the base case was 1950-1990 and 
1991-2008 was considered as the future scenario. Before bias-correction is performed, trends are 
computed for the moving average of the monthly time series of the GCM (model) and the time series is 
de-trended (Wood et al., 2004). The observed and model time series are then used to construct a 
Cumulative Distribution Function (CDF) for the model,  and an inverse cumulative distribution 
function for the observed data, . Example CDFs of temperature (Figure 2-5) are shown for 
NCEP and gridded-observed data aggregated to the model resolution for each month for one grid. The 
bias corrected GCM (model) temperature for a calendar month in year t for specific model grid cell is 
given by: 

  

where the CDF, , denotes the fraction of years in the time series where temperature is less than 
T for the calendar month under consideration and the  is the series of simulated monthly mean 
temperatures for the full simulation (Salathé et al. 2007). All models downscaled using BCSD for the VIC 
hydrologic model study were calibrated over 1950-2000 (base). After bias-correction, trends computed on 
the monthly time series are replaced. This process is repeated for each model grid cell in the domain and 
each calendar month and is the same for precipitation (Figure 2-6). Time series of the original model data 
(NCEP in this case), the gridded-observed data aggregated to the model resolution (~1.9°) and the bias-
corrected model data are shown for each month for temperature (Figure 2-7) and precipitation (Figure 2-
8) for a selected grid location. 

The above describes the approach for the majority of the cases. As there are more GCM data available 
than observations, there are some occurrences where the GCM values fall above or below the range of 
observed values. In that case, the observed CDF is approximated by a Weibull function and the values are 
extrapolated accordingly. For low precipitation, an Extreme Value Type III (Weibull) function is used, 
with a minimum lower bound of zero, whereas for extreme high precipitation an Extreme Value Type I 
(Gumbel) distribution is employed. For temperature, a normal distribution is used for both minimum and 
maximum. 

  



19 
 

 
Figure 2-5. Cumulative distribution functions of monthly temperature (°C) from the NCEP model (blue line) and 
aggregated gridded-observations (red line) at a selected grid cell. 

 
Figure 2-6. Cumulative distribution functions of monthly precipitation (mm) from the NCEP model (blue line) and 
aggregated gridded-observations (red line) at a selected grid cell. 
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Figure 2-7. Time series of monthly temperature (°C) from the NCEP model (grey line), aggregated gridded 
observations (black line), and bias-corrected NCEP model (red line) at a selected grid cell. 

 

Figure 2-8. Time series of monthly precipitation (mm) from the NCEP model (grey line), aggregated gridded 
observations (black line), and bias-corrected NCEP model (red line) at a selected grid cell. 
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Figure 2-9. Average monthly precipitation (mm) over 
1950-1999 for the gridded-observations (top) and from 
the interpolated NCEP model (bottom) for July (left) and 
December (right). 

 

Figure 2-10. Percentage precipitation adjustments 
required to locally scale monthly bias-corrected NCEP 
data to average monthly precipitation (mm) from 
gridded-observed data for same period for July (left) and 
December (right). 

Step – (2) – the bias corrected monthly temperature and precipitation from the model simulations are 
spatially downscaled by interpolating monthly anomalies established over the historical record (1950-
1999) to the target higher resolution of the application (1/16°). This step is referred to as ‘local’ scaling 
because the large-scale simulated precipitation at each local grid point is simply multiplied by a monthly 
scale factor, or added/subtracted for temperature. ‘Local’ scaling is designed to remove the long-term bias 
between the large-scale simulated precipitation or temperature and the observed value at that grid point. 
Fitting is performed independently for each month. Average monthly precipitation for July and December 
for the gridded-observed data and the interpolated model (NCEP) are shown in Figure 2-9. The large-
scale simulated precipitation at each local gridpoint is multiplied by an adjustment factor derived during 
the fitting period, shown in Figure 2-10 for both months for the NCEP case. 

This process can be described in mathematical terms as follows. If Pmod(x,t) is the simulated large-scale 
monthly mean precipitation containing a location x and at time t in months ‘mon’, then the downscaled 
monthly mean precipitation ,  is:  

, ,  

where …  is the monthly mean taken over the fitting period or calibration period where the gridded-
observed dataset and the historic run of the GCM over lap at the 1/16° grid scale (Salathé 2005). The 
fitting is performed independently for each month. Similarly air temperature is scaled by adjusting the 
bias corrected GCM or NCEP data, but with an additive adjustment instead. Average monthly minimum 
temperature for the gridded-observed data and interpolated average monthly average temperature for the 
model (NCEP) are shown in Figure 2-11.  
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Figure 2-11. Average minimum monthly temperature 
(°C) over 1950-1999 for the gridded-observations (top) 
and average monthly temperature from the interpolated 
NCEP model (bottom) for July (left) and December 
(right). 

Figure 2-12. Absolute temperature adjustments required 
to match bias-corrected NCEP data to average minimum 
and maximum temperatures (°C) from gridded-observed 
data for same period for July and December. 

 

The minimum and maximum scaling for the model is done by comparing average temperature in the 
model to minimum and maximum temperatures from the gridded-observed data because only average 
temperature is available for most models. The locally scaled monthly mean surface temperature is given 
by 

, ,  

, ,  

where …  is the monthly mean taken over the fitting period or calibration period where the gridded-
observed dataset and the historic run of the model overlap at the 1/16° grid scale (Salathé 2005). The 
local-scale temperature is generated by removing the monthly bias in the large-scale mean. ,  
and ,  values required to correct NCEP based on comparison to gridded-observations over the 
1950 to 1990 period are shown for each VIC grid cell in BC (1/16°) in Figure 2-12. Since the local 
temperature is found from the large-scale temperature simply by adding or subtracting a monthly bias in 
the mean, it can be thought of as a lapse-rate correction. Differences in temperature are most likely due to 
the elevation difference of the local grid point (1/16°) relative to the GCM grid. If the lapse rate is 
strongly affected by climate change this assumption will break down (Salathé 2005). 

Step – (3) – The daily time series is created by temporally downscaling the bias corrected, locally scaled, 
monthly time series (1950-2100) by scaling (for Ptot) or shifting (for Tmin and Tmax) month-long daily 
patterns resampled from the 1/16° historic record (1950-2006; Wood et al. 2002). This temporal selection 
applies a stochastic technique, wherein a historic month in the observed-gridded record is chosen 
randomly except for a check to ensure a relatively wet historic month is picked when a wet month is 
being downscaled. The temperatures are then chosen from the same month to match the one selected for 
precipitation and both are selected for the entire region of interest, such as BC, at 1/16° for that month to 
preserve a degree of synchronization in the weather components driving the hydrologic response (Wood 
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et al. 2004). The daily variability from the selected month is imposed on all gridpoints while preserving 
the downscaled monthly mean from the model (NCEP in this case). This disaggregation yields daily 
minimum (Tmin) and maximum (Tmax) temperatures. The observed sequence of Tmin and Tmax for the 
selected month are shifted by a constant factor  such that the shifted daily mean temperature 

0.5  

averaged over the month, equals the downscaled monthly mean surface temperature from the model 
(NCEP in this case). Thus, the diurnal range is taken from the analogue month and is not subject to 
climate change (Salathe et al. 2005). This is a necessary assumption as daily GCM data is not applied in 
this process, in spite of evidence that the diurnal temperature range has changed in the past and is 
predicted to change in the future. Minimum temperature has increased faster than maximum temperature 
in many areas in BC (Rodenhuis et al. 2009). 

Lastly, the resulting downscaled daily time series is checked and corrected against a prescribed threshold, 
defined as 150% of the observed maximum precipitation for each cell in the gridded-observed record in 
that month, to ensure no anomalous large daily precipitation events take place and to spread out very large 
daily precipitation values into one or more adjacent days (Hamlet et al. 2010). This is a potential downfall 
of this method as future daily precipitation values are not permitted to be greater than those in the past. 
Daily wind speeds are taken without adjustment from the gridded observed values for the selected year 
and month for the BCSD downscaled product (Wood et al. 2002). In other words, no wind information 
from the GCM/model is used in BCSD.  

Daily precipitation (Figure 2-13) and minimum and maximum temperature (Figure 2-14a and Figure 2-
14b) are shown for a select 1/16° grid cell as downscaled from NCEP using BCSD for 1991-2000. Since 
daily data was not used to calibrate the technique this is an independent validation of the daily data 
produced by this technique. This period of record was not included in the calibration of BCSD to NCEP 
and therefore, can be considered a unique validation period. The timing and magnitude of daily 
precipitation and daily minimum and maximum temperatures are within the range of gridded-observations 
(Figure 2-13, Figure 2-14a and Figure 2-14b). This location is given as an example and is not necessarily 
representative of the match between gridded-observations and BCSD downscaled NCEP at other 
locations in the province. 

Given the decision to not downscale daily information from the GCM with this technique, it is important 
to note that the daily characteristics are an artifact of the temporal re-sampling procedure and do not 
directly reflect changes to statistical properties of daily weather projected by individual GCMs. For 
example, because the frequency of precipitation is re-sampled from the historic record, the frequency of 
wet/dry days and duration of wet spells does not change. However, application of daily GCM data is more 
limited in published studies than monthly and because of this there are those in the user community who 
are less likely to trust daily GCM data. Additionally, strategies for statistically downscaling daily GCM 
data would include more uncertainties than working with monthly data. Nevertheless, daily or sub-
monthly GCM data would have to be downscaled to study changes in hydrologically pertinent variables 
such as the duration of wet and dry spells. 
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Figure 2-13. Daily precipitation (mm) downscaled using BCSD from the NCEP model (red circles) and gridded-
observations (black circles) at a selected 1/16° grid cell from January 1, 1991 to December 31, 2000. 

 

Figure 2-14. Daily minimum (a) and maximum (b) temperature (°C) downscaled using BCSD from the NCEP 
model (red lines) and gridded-observations (black lines) a selected 1/16° grid cell from January 1, 1991 to December 
31, 2000. 

 

  

a) b) 
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Strengths of this method include its ability to explicitly capture the transient nature of the emissions 
scenarios, which is useful for capturing the trend in the regional climate and hydrologic response. 
Projected changes in the monthly signal are useful for many planning purposes. This method has also 
been shown to perform well when results tuned to the cold phase of the Pacific Decadal Oscillation 
(PDO) are applied on the warm-PDO and vice versa, suggesting it functions in altered climates and may 
work in future climates (Salathé et al. 2007), although the difference between the cold and warm PDO are 
not of the same magnitude as the forced signal at the end of the 21st century. The trends in the climate 
projection and the modes/shifts in climate variability are preserved in the transient downscaling of 
monthly GCM time-series (Mote and Salathé 2009). A limitation of the method is if GCMs are of poor 
quality, the process carries this information forward, although the case would be the same with many 
downscaling approaches. Thus, the approach requires careful screening of the GCMs. As we have done in 
this study, screening models to ensure that they closely reproduce important statistics such as sequencing 
and variability over the area of interest and over the historical record, is important especially at small 
spatial scales (Hamlet et al. 2010). 

Alternative approaches to projecting future changes in streamflow using BCSD include other statistical 
downscaling methods, such as Expanded Downscaling (Bürger, 1996; Bürger et al. 2009) or Tree-GEN 
(Stahl et al. 2008). These are commonly used to downscale to a station and therefore their outputs would 
have to be interpolated in some way to drive a distributed hydrologic model like VIC. Dynamical 
downscaling, also referred to as regional climate modelling, could also be used to project future changes 
in streamflow, or a combination of the two. A Regional Climate Model (RCM) represents the local 
responses to climate change with higher resolution than a GCM, which may be critical to applications in 
regions of complex terrain and land-water contrasts (Mote and Salathé 2009). Via an RCM, GCM output 
can be dynamically downscaled and can be explored directly at the native resolution of the RCM within a 
fully coupled land-ocean-atmosphere environment. Such an approach has also been pursued at PCIC as a 
parallel project. Discussion of those results is beyond the scope of this report and the reader is referred to 
Rodenhuis et al. (2010) for further details. Much like GCMs, RCMs are biased and need to be statistically 
downscaled before using RCM results to drive a hydrologic model. Work in this field is still evolving and 
not yet common practice, but has great potential (Leung et al. 2003; Wood et al. 2004).  
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3. Validation 

The BCSD method has been tested at 1/8° resolution over several regions in North America, most of 
which were in the US. It has been compared to other statistical methods such as linear interpolation (LI), 
spatial disaggregation (SD) and constructed analogues (CA) as well as dynamic downscaling approaches 
(Wood et al. 2004; Salathé et al. 2007; Maurer and Hidalgo 2008). One approach to testing the BCSD 
output is to run it through the VIC hydrologic model and compare simulated streamflow to observed 
streamflow. In one case, BCSD successfully reproduced the main features of the observed 
hydrometeorology from both a GCM and an RCM due to the bias correction step that made it superior 
over the LI and SD approaches (Wood et al. 2004). In another study, the CA and BCSD approaches were 
compared for their ability to produce continuous, gridded time series of precipitation and surface air 
temperature over the western US. CA downscales daily large-scale data directly and BCSD downscales 
monthly data, and generates daily values with a random resampling technique (Maurer and Hidalgo 
2008). Both have comparable skill in producing downscaled, gridded fields of precipitation and 
temperature at a monthly time step. The CA method was better than BCSD in reproducing low 
temperature extremes in fall and winter and high temperature extremes in summer. The ability to produce 
skillful downscaled daily data was found to rest with the skill of the GCM to produce daily data (Maurer 
and Hidalgo 2008).  

The above mentioned studies have tested BCSD at 1/8° resolution over the US. In this study we validated 
the BCSD results at the 1/16° resolution over BC by comparing our downscaled gridded temperature and 
precipitation to our gridded-observed dataset. NCEP/NCAR reanalysis data was used as the surrogate 
GCM. NCEP serves as an appropriate surrogate GCM due to its comparable resolution of approximately 
1.9° per side and its reanalysis of observations. Additionally, as a reanalysis product, the timing of annual 
variability in NCEP should match those in the observations, which makes it meaningful to compare 
results of downscaling NCEP to gridded observations from year to year. By downscaling NCEP with 
BCSD we can test the strength of the BCSD method without having to overcome the strong biases found 
in many GCMs. The technique will be calibrated over 1950 to 1990 and validated over 1991 to 2000. 
This is a relatively short validation period for a region where there is such large inter-annual variability in 
precipitation, but was all that was available with the current datasets. These experiments tested the skill of 
the BCSD technique at a higher resolution in a hydro-climatically complex region, where some of the 
largest climate changes are projected due to the snow-albedo effect (Christensen et al. 2007). 

3.1 Spatial Analysis of Monthly Average Conditions 

First, average raw NCEP data (~1.9°) was compared to gridded-observations (~1/16°) for July and 
December over the 1950 to 1990 period. Temperature patterns and magnitudes were similar between the 
two datasets for July and December, but NCEP lacked detail in comparison to higher resolution gridded-
observations (Figure 3-1). In July, both datasets displayed warm average conditions in the southern and 
northeastern portions of the province (12.5°C to 15°C) and moderate temperatures in the northwest and 
central coast (2.5°C to 12.5°C), although colder conditions (2.5oC to 5oC) were more pervasive according 
to NCEP in the northwest (Figure 3-1a). The largest differences between the two datasets were found in 
regions with large elevation gradients, where high elevations remained below 5°C and some of the valleys 
reached temperatures greater than 20°C on average in July (Figure 3-1a). In December, both datasets 
present cold average conditions (-25°C to -10°C) in the north part of the province, below freezing 
conditions (-10°C to 0°C) in the central part of the province, and near zero conditions (-5°C to 5°C) along 
the central coast and south coast (Figure 3-1a). Again, primary differences resulted from lack of 
resolution in NCEP that prevented adequate representation of strong elevation gradients; valleys were 
primarily ~5°C warmer according to the gridded observations than the corresponding NCEP tile and 
mountain peaks were ~3°C cooler. Elevations of BC as represented in the gridded-observations and 
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NCEP are shown in Figure 3-2. The range in elevation for NCEP is less than half that of the elevation in 
the gridded-observations. However, some noticeably warmer areas (~2°C warmer) were found in NCEP 
on the west coast islands, suggesting the reanalysis product is warmer than the gridded-observed data, 
possibly due to different stations being included in the gridded-observation dataset than used in NCEP. 
There could be a lower number of observations in the gridded-observed product in these regions. 

 

 
Figure 3-1. Average temperature (a) and precipitation (b) in July and December over 1950-1990 for NCEP (bottom 
row) in its native 1.9° resolution as compared to the gridded-observed (1/16°) climatology for the same period (top 
row).  

 
Figure 3-2. Elevation of BC as represented by 1/16° Shuttle Radar Topography Model (SRTM) Digital Elevation 
Model (DEM) applied to create gridded-observations and 2° DEM applied in NCEP reanalysis. 

 

a) b) 
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Precipitation varied in its spatial pattern and magnitude between the two datasets for July and December. 
In July, the range in the magnitude of precipitation was similar in both datasets (~0 to 200 mm). 
However, much of the variation in precipitation was not represented from north to south, east to west and 
from low to high elevation in NCEP as it was in the gridded-observations (Figure 3-1b). In December, 
precipitation is underestimated by NCEP along the coastline and in the interior mountains (Figure 3-1b). 
Maximums of 275 mm in the coastal regions found in NCEP do not compare with maximums of 1220 
mm outlined in the observed, although regional averages at the NCEP grid box scale might be correct. 
Additionally, some of the drier regions in the province, such as the lee-side of the Coast Mountains and 
northeast are not represented by NCEP because precipitation values are greater than those from gridded-
observations by more than 100 mm in some places. 

To test the BCSD procedure in BC, validation was carried out over 1991 to 2000, which is distinct from 
the 1950 to 1990 calibration period. Over 1991 to 2000, July temperature differences ranged from -2.2°C 
to 0.6°C and had a median difference of -0.3°C. Cold biases prevailed in the northwest and south central 
area of the province with differences of up to -2.2°C and warm biases remained in the northeast corner of 
the province with differences of up to 0.6°C in this month. December temperatures were within -1.8°C to 
0.4°C and had a median difference of -0.6°C (Figure 3-3a). Biases were primarily negative and close to 
zero, except for some areas of the coast where warm biases (~0.4°C) were found. For precipitation, BCSD 
downscaled NCEP results were within -35% to 69% of gridded-observations for the majority of the 
province in July (Figure 3-3b). Dry areas were found in the middle section of the province and on the 
south coast of Vancouver Island and wet areas were found in the northeast and south. NCEP results were 
dry in July on average over BC in comparison to gridded-observations based on the median by -4%. In 
December, differences were between -49% and 59% and were unbiased on average over the province 
according to the median (0%). Wet areas remained along the western portion of the province and dry 
areas along the east, with maximum dry bias of -49% situated in the northern tip of the Columbia basin 
near the BC-Alberta border (Figure 3-3b). 

Based on the median, downscaled results were representative of observed average temperature and total 
precipitation for July and December when BCSD downscaled NCEP results were compared to gridded-
observed data over the 1991 to 2000 period. In some areas where the NCEP BCSD results were drier than 
gridded-observations, gridded-observations were found to have a trend over 1950-2000 that was not 
captured by calibrating BCSD to 1950-1990. The trend in the gridded-observations might have reflected 
increases in precipitation caused by a shift in the PDO combined with climate warming, or might be a 
result of changes to the station mix caused by adding new stations later in the record. This will have to be 
looked into further to rule out issues with the gridded-observations. 
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Figure 3-3. The difference between BCSD downscaled NCEP and gridded-observed values for (a) temperature as 
NCEP BCSD minus OBS (°C) and (b) precipitation as NCEP BCSD minus OBS divided by OBS (%) are shown for 
July and December. 

3.2 Comparison of Daily Results via Indices 

Daily downscaled values result from re-sampling daily values from the gridded-observed record. Selected 
months in the gridded-observed record are adjusted to match monthly values of the bias-corrected, 
locally-scaled GCM (or NCEP) data. Thus, the frequency of days with or without precipitation will match 
those in the months sampled from the gridded-observed record and is not related to the model. Given the 
stochastic nature of this process, one is left to wonder how realistic resulting daily values are. One way to 
evaluate the skill in representing daily values is to compare the BCSD downscaled NCEP values to those 
from the VIC gridded-observed dataset via climate indices at the same location. The climate indices 
investigated in this case are part of Climdex. Climdex is a common climate indices package that computes 
values for 29 core indices based on daily precipitation, minimum and maximum temperature (Peterson 
2005). These indices describe the daily extremes, such as the number of heavy precipitation days denoted 
as days where precipitation is greater than 10 mm or percentage of days when maximum temperature is 
greater than the 90th percentile. To evaluate extremes, long time periods are required (i.e., > 10 years). 
Thus, the following analysis pertains to the 1961 to 2006 period of record, which includes part of the 
calibration period (1950 to 1990). In the previous section, validation of BCSD results was carried out for 
a separate validation period, but in this case it was necessary for the validation period to overlap with the 
calibration period to provide adequate records to explore extremes. BCSD results were evaluated for the 
following 12 indices, a subset of the 29 core indices available (Table 3-1): 

  

a) b) 
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Table 3-1. Definition of Climdex climate indices applied in this study. 

ID Indicators Name Definitions UNITS
R10 Number of heavy precipitation days Annual count of days when PRCP>=10mm days
R20 Number of very heavy prec. days Annual count of days when PRCP>=20mm days
R95p Very wet days Annual total PRCP when RR>95th percentile mm
PRCPTOT Annual total wet-day precipitation Annual total PRCP in wet days (RR>=1mm) mm
TN10p Cool nights Percentage of days when TN<10th percentile days
TN50p (not an extreme index) Percentage of days when TN>50th percentile days
TN90p Warm nights Percentage of days when TN>90th percentile days
TNn Min Tmin Monthly minimum value of daily minimum temp °C
TX10p Cool days Percentage of days when TX<10th percentile days
TX50p (not an extreme index) Percentage of days when TX>50th percentile days
TX90p Warm days Percentage of days when TX>90th percentile days
TXx Max Tmax Monthly maximum value of daily maximum temp °C

 

BCSD daily values for one grid are compared to VIC gridded-observations at the same location and the 
nearest climate station (Victoria International Airport – 1018620). For the temperature variables TN10p, 
TN50p, TX10p, and TX50p the BCSD downscaled NCEP results match the explained variance (EV) of the 
VIC gridded-observations and that of the station data at the 99% confidence level (Table 3-2). An EV of 
80% means that 80% of all observed variation is simulated by the BCSD downscaled NCEP. Percentiles 
are calculated over the 1961-2006 period. Review of the plots for these variables shows that, although the 
years when the percentage days less than the 10th percentile or greater than the 50th percentile do not 
coincide between the BCSD results and the observations (gridded and station data), the variability and 
range between all three datasets is similar (Figure 3-4 and Figure 3-5). Due to the stochastic nature of the 
temporal disaggregation process that produces daily values we would not expect the timing of events in 
the BCSD results to match those in observations. The explained variance for the BCSD for TN90p, 
TX90p, TNn and TXx match the gridded-observed data at the 99% confidence interval, but not when 
compared to the station observations. This suggests that gridded-observations do not represent the 
temperature extremes found in the station data and since BCSD is calibrated against the gridded-
observations it too does not have the same variability as the station data. The monthly minimum 
(maximum) value TNn (TXx) of daily minimum (maximum) temperature is not comparable to the station 
data at the 99% confidence interval (Table 3-2). A few events where temperatures are low in the observed 
records for TNn are not reproduced by downscaled NCEP data (Figure 3-4). TXx temperatures from 
downscaled NCEP are less than both observational datasets for most of the record by 5°C or 6°C in some 
places (Figure 3-5). Because the monthly maximum value of daily maximum temperature is being 
downscaled from mean monthly GCM values it is hard to reproduce with the BCSD process. 
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Figure 3-4. BCSD downscaled NCEP (red) compared to VIC gridded-observations (grey) and Victoria International 
Airport climate station (black) for four minimum temperature indices (TNn (°C), TN10p (days), TN50p (days), 
TN90p (days)). 

 

Figure 3-5. BCSD downscaled NCEP (red) compared to VIC gridded-observations (grey) and Victoria International 
Airport climate station (black) for four maximum temperature indices (TXx (°C), TX10p (days), TX50p (days), 
TX90p (days)). 
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Table 3-2. Explained variance (EV) for each variable in Table 3-1 when BCSD downscaled NCEP is compared to 
gridded-observations (EV1) and to station observation (EV2). When values are shown it indicates downscaled 
NCEP values are within 99% confidence interval of gridded-observations. Percentiles are calculated over 1961-2006 
for EV1 and over 1991-2006 for EV2. The total variance is given by 100 – EV. 

ID R10mm R20mm R95p PRCPTOT TN10p TN50p TN90p TNn TX10p TX50p TX90p TXx

Units days days mm mm days days days °C days days days °C

EV1 22 -15 -51 29 -79 -228 -227 -45 -118 -158 -126 -440

EV2 32  -87 36 -40 -124 -131 -178  

 

 

Various annual statistics for daily precipitation from BCSD downscaled NCEP are similar to the gridded-
observed and station data (Figure 3-6). This could be because daily values are created through selection of 
months from the gridded-observed record based on whether their precipitation totals are relatively wet or 
dry to better match the month which is being downscaled from the model (NCEP in this case). 
Temperature values are derived from the same months picked for precipitation. Downscaled NCEP values 
have similar variance to the gridded-observed and station data for all four variables (R10mm, R20mm, 
R95p and PRCPTOT), except downscaled R20mm does not have the same variance as the station data. 
The R20mm events are not replicated by the BCSD NCEP results or the gridded-observations. Therefore, 
it can be assumed that the events recorded by the station were not captured by the process used to create 
the gridded-observed values and the BCSD process was therefore not able to replicate these events. 

 

Figure 3-6. BCSD downscaled NCEP (red) compared to VIC gridded-observations (grey) and Victoria International 
Airport climate station (black) for four precipitation indices (R10mm (days), R20mm (days), R95p (mm), 
PRCPTOT (mm)). 
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This analysis is based on NCEP data, which should have similar values to observed records because it is a 
reanalysis product, although it is originally produced at the 1.9° scale and at such a scale is not able to 
capture the local-scale events. Additionally, it should be noted that because the daily information does not 
come from the GCM, but instead from the gridded-observed data, the frequency of precipitation events 
modelled in GCMs will not be captured and transitions to more frequent or less frequent precipitation in 
the future under climate change will be lost. 

Based on these results, it seems that BCSD is able to reproduce the statistics of the gridded-observed 
record to which it is calibrated. BCSD daily results also have variance close to that of station data for 
some of the variables investigated, in spite of the somewhat stochastic process used to derive daily values. 
This suggests that BCSD downscaling produces physically realistic historical daily results. 

This is only one limited test of daily values produced by the BCSD method. It should be taken into 
consideration that area-averaged values always reduce the magnitude of extremes (Haylock et al. 2008). 
Therefore, comparing station data to spatially averaged gridded downscaled results is a hard test. Since 
the daily values are derived by resampling the historical gridded observations and adjusting them based 
on the bias-corrected, locally-scaled monthly GCM projections, this approach does not explicitly capture 
changes to future daily extremes that are projected by the various GCMs. In studies that require daily data 
to analyze future droughts or flood events, other downscaling methods should be sought. 
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4. Results and Discussion 

This section will discuss BCSD results as an ensemble and by emissions scenario to explore the range in 
possible futures and their response over BC. Additionally, to better understand the result of applying 
BCSD to a GCM, CGCM3 A2 projections downscaled using BCSD are compared to raw GCM 
projections for average annual temperature and annual total precipitation in BC. This model was selected 
because it was used in Climate Overview: Hydro-climatology and Future Climate Impacts in British 
Columbia (Rodenhuis et al. 2009), the first report of the Hydrologic Modelling Project.  

4.1 Spatial - Multiple Scenarios 

High-resolution (1/16°) BCSD downscaled results are presented for annual and seasonal average 
temperature and total precipitation anomalies in the 2050s (2041-2070) as a difference from 1961-1990 
over BC. Minimum, maximum, average and median values are computed for the 23 projection ensemble 
which is composed of eight models (CCSM3, CGCM3.1(T47), CSIRO-Mk3.0, ECHAM/MPI-OM, 
GFDL2.1-CM2.1, UKMO-HadCM3, UKMO-HadGEM1 and MIROC3.2 (medres)) all run under three 
emissions scenarios (B1, A1B and A2) except for UKMO-HadGEM1, which was not run under B1. In the 
following section, we will describe the range in projected changes across BC and its regions, both 
annually and seasonally for this ensemble. 

By the middle of the 21st century (2050s) annual temperatures are estimated to increase by 2.3 °C for the 
median of the ensemble on average over BC. Projected increases in annual temperature range from 1.4 °C 
to 3.7 °C over the province based on 23 scenarios (Table 4-1). The greatest warming is projected for 
winter at 2.7 °C (0.6 °C to 3.6 °C) and summer at 2.5 °C (1.4 °C to 4.4 °C), with spring and fall both 
projected to increase by 2.1 °C (1.1 °C to 3.9 °C; Table 4-1). These results are 0.8 °C, 0.7 °C and 0.7 °C 
warmer than those projected in Rodenhuis et al. (2007) in winter, summer and annually, respectively, 
because the eight models selected for this study are warmer than the 15 investigated in the Climate 
Overview. Annual precipitation is projected to increase by 8% (0% to 18%) by the 2050s (Table 4-1). 
Almost equal increases are projected for winter, spring and fall of ~12% (0% to 27%). Decreases of -1% 
are projected in summer based on the median, although they could be as great as -21% (minimum) or 
could increase by 5% (maximum). Projected increases in precipitation annually and seasonally are within 
5% of those based on the 15 scenarios in the Climate Overview (Rodenhuis et al. 2009). 

 

Table 4-1. BC 2050s (2041-2070) ensemble temperature and precipitation anomalies from 1961-1990, including 23 
downscaled projections from 8 GCMs run under B1, A1B and A2 (except for HADGEM1 which was not available 
for B1). Values are computed for each projection as averaged over BC. 

 Temperature Anomaly (°C) Precipitation Anomaly (%) 
Winter Spring Summer Fall Annual Winter Spring Summer Fall Annual 

Minimum 0.6 1.1 1.4 1.3 1.4 5 0 -21 1 0 
Average 2.6 2.1 2.6 2.2 2.4 13 12 -3 13 9 
Median 2.7 2.1 2.5 2.1 2.3 12 13 -1 12 8 

Maximum 3.6 3.2 4.4 3.9 3.7 26 19 5 27 18 
 

 

Seven regions were defined in the Climate Overview to describe the variation in climate across the 
province: (1) South Coast, (2) Okanagan, (3) Columbia Basin, (4) Fraser Plateau, (5) North Coast, (6) 
Northwest, and (7) Peace Basin (Figure 4-1). BCSD results have been queried for these basins and will be 
described here and contrasted to those for the Climate Overview. Average winter temperature increases in 
the 2050s are projected to be the greatest in the Peace Basin at 3.1°C and the least on the South Coast at 
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2.0°C (Table 4-2). Temperature increases are almost uniform across the province in spring, ranging from 
2.0°C to 2.2°C. During summer, the Columbia and Okanagan basins are projected to warm the most at 
3.1°C and 3.2°C, respectively, while the North Coast is projected to warm by only 2.1°C (Table 4-2). 
Similar to spring, there is less range in the temperature changes projected for fall. The Columbia, Peace 
and Okanagan basins are projected to warm the most in fall at 2.3°C, 2.3°C and 2.4°C, respectively, based 
on the ensemble. Annually, the least increase is projected for the North Coast (2.1°C), while the 
Okanagan, Columbia and Peace Basins all tie for the greatest temperature increase at 2.5°C. These 
projected increases are larger than those in the Climate Overview, but the pattern of which regions warm 
more so than others is similar.  

 

 

Figure 4-1. Hydro-climatic regions defined for the Climate Overview report (Rodenhuis et al. 2009). 

 

 

Table 4-2. Regional 2050s (2041-2070) ensemble average temperature and precipitation anomalies from 1961-1990, 
including 23 downscaled projections from eight GCMs run under B1 (except for HADGEM1), A1B and A2. 

 Region Temperature Anomaly (°C) Precipitation Anomaly (%) 
Winter Spring Summer Fall Annual Winter Spring Summer Fall Annual 

1 South Coast 2.0 2.0 2.5 2.1 2.2 5 6 -14 8 4 
2 Okanagan 2.4 2.2 3.2 2.4 2.5 7 9 -14 9 3 
3 Columbia 2.4 2.1 3.1 2.3 2.5 13 12 -9 12 8 
4 Fraser 2.4 2.2 2.6 2.2 2.4 11 11 -7 12 6 
5 North Coast 2.2 2.0 2.1 2.0 2.1 9 8 -5 9 7 
6 Northwest 2.7 2.1 2.3 2.2 2.3 15 12 8 13 12 
7 Peace Basin 3.1 2.2 2.4 2.3 2.5 19 17 4 17 12 
 

 

The largest increases in winter precipitation for the 2050s are projected for the Peace Basin (19%), while 
the smallest are projected for the South Coast (5%; Table 4-2). The largest increases in precipitation are 
projected for winter in all regions, except the Okanagan, South Coast, and Fraser. In the Fraser, the 
greatest increases are projected for fall. Spring increases are largest in the Peace Basin (17%). Decreases 



37 
 

in precipitation are projected for most areas during summer, except for the Peace Basin and the 
Northwest, where precipitation is projected to increase by 4% and 8%, respectively. In fall, the largest 
increases are also projected in the Peace region (17%). Annually, increases in the Peace Basin and in the 
Northwest region are on par at 12%. Other regions like the South Coast are projected to increase by only 
4%. 
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Figure 4-2. Temperature (°C) change projected for the 2050s (2041-2070) from 1961-1990 under the B1, A2 and A1B emissions scenario for each seasons for 
the low, median and high scenario of BCSD downscaled data from eight selected GCMs (except no HADGEM1_B1). 
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Figure 4-3. Precipitation change as a percentage of 1961-1990 projected for the 2050s (2041-2070) under the B1, A2 and A1B emissions scenario for the low, 
median and high scenario of BCSD downscaled data from eight selected GCM (except no HADGEM1_B1).
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In the following two paragraphs, BCSD results for the province will be explored by emissions scenario 
annually and by season. The greatest warming in annual temperature is projected by models run under the 
A1B emissions scenario for minimum, median and maximum scenarios (Table 4-3). The least amount of 
temperature increase is projected in scenarios run under the B1 emissions scenarios (Table 4-3). The ratio 
of median increase in annual temperature projected across the province can be stated as 1.00:1.39:1.27 for 
the B1:A2:A1B emissions scenarios, respectively. Annual precipitation projections for the 2050s are 
fairly uniform by emissions scenario (Table 4-3). The ratio of median increases in precipitation projected 
across the province is 1.00:1.13:0.88 for the B1:A2:A1B emissions scenarios, respectively. The widest 
range in precipitation changes occurs under the A1B emissions scenario where minimum and maximum 
changes range from 0% to 18% (Table 4-3). Annually, projected precipitation changes vary more from 
the minimum and maximum of the ensemble (-21% to 5%; Table 4-1) than they do from one emissions 
scenario to another (0% to 6%; Table 4-3). 

 

Table 4-3. BC 2050s (2041-2070) ensemble annual temperature and precipitation anomalies from 1961-1990 by 
emissions scenario for BCSD downscaled projections from eight GCMs (except for HADGEM1 which had no B1). 

 

 Temperature Anomaly (°C) Precipitation Anomaly (%) 
Emissions  Scenarios Min 50th Max Min 50th Max 
B1 1.4 1.8 2.9 6 8 15 
A1B 2.2 2.5 3.7 0 9 18 
A2 1.8 2.3 3.5 3 7 15 

 

Across all seasons, projected changes in temperature and precipitation in the 2050s under the A1B 
scenario are the greatest on average across BC when compared to the results for models run under B1 and 
A2 (Table 4-4; Figure 4-2; Figure 4-3). Median warming is greater in winter at 3.2°C than any other 
season under A1B. The lowest increase in temperature is projected for fall under B1 at 1.6°C. Median 
projected precipitation change in the 2050s under A1B range from decreases projected for summer (-5%) 
to increases projected in fall (12%), spring (15%), and winter (13%; Table 4-4). These changes are within 
5% of median changes projected under all 23 scenarios (Table 4-1). Under the median of the A1B 
scenario, precipitation increases of 10% to 20% are projected for winter, spring and fall for most of the 
province; areas in the northeast are projected to have increases of closer to 30% (Figure 4-3). The largest 
decreases (-20%) are projected for summer under this scenario and expected to occur in the southern half 
of the province according to the median of eight GCMs downscaled using BCSD (Figure 4-3). 

 

Table 4-4. BC 2050s (2041-2070) ensemble seasonal temperature and precipitation anomalies from 1961-1990 by 
emissions scenario for BCSD downscaled projections from eight GCMs (except for HADGEM1 which had no B1). 

 Temperature Anomaly (°C)
 Winter Spring Summer Fall 
Emissions Min Median Max Min Median Max Min Median Max Min Median Max 
B1 0.6 2.5 3.6 1.1 1.7 2.8 1.4 2.0 3.0 1.3 1.6 2.3 
A1B 1.5 3.2 3.6 1.7 2.4 3.2 1.9 3.0 4.4 1.9 2.5 3.9 
A2 0.6 2.9 3.3 1.4 2.1 2.8 1.8 2.7 4.2 1.6 2.2 3.6 
 Precipitation Anomaly (%) 
 Winter Spring Summer Fall 
Emissions Min Median Max Min Median Max Min Median Max Min Median Max 
B1 6 12 26 0 13 19 -4 0 4 5 12 20 
A1B 10 13 26 3 15 19 -21 -5 5 3 12 27 
A2 5 8 22 1 14 18 -14 -2 2 1 12 26 
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Overall, the spatial pattern of projected change was consistent among downscaled models within seasons. 
In the winter, warming primarily took place in the northern portion of the province (Figure 4-2). In the 
summer, warming was more concentrated in the southeast. Warming was more uniform over the province 
in the spring and fall. Precipitation was projected to increase more in the northern and eastern regions of 
the province during the winter, spring and fall, and to decrease in the southwest during the summer 
(Figure 4-3). GFDL2.1 run 1 B1 had a different spatial pattern than the other models during summer, 
where precipitation was projected to decrease in the eastern portion of the province and increase in the 
west (Figure 4-3). 

4.2 Spatial - CGCM3 A2 

One of the models selected for downscaling with BCSD was CGCM3. This model is used widely (e.g., 
Dawson et al. 2008; Picketts et al. 2009; Mote and Salathé 2009; Rodenhuis et al. 2009; PCIC 2010a and 
PCIC 2010b) and performed well according to the performance metrics presented in section 3.2. 
Additionally, other studies have recommended this model (Murdock and Spittlehouse, in prep.), or have 
presented results from this model for BC (Rodenhuis et al. 2009). Results for CGCM3 A2 run1 are shown 
here to demonstrate how BCSD results differ from that of the GCM in its native resolution. These results 
will also help to situate the projections from this model amongst the seven other models selected for this 
study as a relatively warm/cool or wet/dry model relative to the others in the group over the province. In 
the three BC watersheds mentioned previously, the Campbell, Peace and Upper Columbia, CGCM3 A2 
run1 was in the middle of the range of projected changes in temperature and precipitation in the 2050s 
versus 1961-1990 (Figure 2-1, Figure 2-2 and Figure 2-3).    

The mean annual temperature and precipitation for the BCSD results (left panels of Figure 4-4 and Figure 
4-5) have a similar range to the un-corrected CGCM3 results (right panels of Figure 4-4 and Figure 4-5). 
They are equivalent to those presented in the Climate Overview: Hydro-climatology and Future Climate 
Impacts in British Columbia report (Rodenhuis et al. 2009). In both reports, the northern regions of the 
province are projected to warm the most by ~3°C (Figure 4-4) and the precipitation is projected to 
increase by up to 30% in the northwest region of the province (Figure 4-5). Temperature changes are 
fairly uniform across the province in both products. This is because the GCM is coarsely resolved and 
BCSD does not add detail when temperature differences are examined (2050s Average Temperature 
minus 1961-1990). The precipitation response in the BCSD downscaled CGCM3 is more spatially 
resolved, and as a result, the impact of mountain ranges on the precipitation changes can be discerned at 
this scale. BCSD adjusts the spatial pattern of precipitation change in the GCM to match the gridded-
observations in the local scaling step and, unlike temperature, produces smooth maps of precipitation 
ratios. So when differences are examined in precipitation, there is more regional variation. One area 
where differences between the two results are dramatic is the southeast portion of the province, where 
precipitation is projected to increase by ~30% in the BCSD result, whereas precipitation was projected to 
increase by only ~15% in the un-corrected CGCM3 results. The BCSD technique, which bias corrects 
each GCM grid against the gridded-observed data aggregated to the GCM scale, adjusts GCMs to have 
more precipitation in mountainous areas where GCMs would not have the ability to generate it due to lack 
of elevation gain at low resolution. The BCSD downscaled CGCM3 A2 scenario was second warmest 
scenario after HADGEM A2 in winter, the third coolest in spring, summer and fall, and the wettest 
(summer) or second wettest model out of the eight models selected for downscaling in all seasons. Thus, 
CGCM3 is one of the wetter models of the ensemble and one of the warmest and wettest in winter. 
Planning made on the basis of CGCM3 may be based on warmer, wetter conditions in winter than other 
members of the ensemble. 
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Figure 4-4. BCSD downscaled (left) and raw (right) projected change in annual temperature (°C) for the 2050s 
(2041-2070) as a difference from 1961-1990 for run 1 of CGCM3 run under the A2 emissions scenario. 

 

 

Figure 4-5. BCSD downscaled (left) and raw (right) projected change in annual precipitation (%) for the 2050s 
(2041-2070) as a difference from 1961-1990 for run 1 of CGCM3 run under the A2 emissions scenario. 
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Figure 4-6. BCSD downscaled (left) and raw (right) projected change in seasonal (a) temperature (°C) and (b) 
seasonal precipitation (%) for the 2050s (2041-2070) as a difference from 1961-1990 for run 1 of CGCM3 run under 
the A2 emissions scenario. 

 

  

a) b) 
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4.3 Time Series 

One of the strengths of the BCSD method is that it generates a bias corrected, spatially disaggregated 
daily time series at 1/16° resolution for the entire length of available GCM results. BCSD downscaled 
temperature and precipitation follow the values of the GCM they have been downscaled from closely over 
the province (Figure 4-7a and Figure 4-7b). In some cases, the smoothing process applied, known as 
LOESS (Cleveland et al. 1988) has exaggerated the differences between the raw GCM and BCSD results 
close to 2100. The range in projected temperature and precipitation for the eight selected GCMs is 
narrower than that of all available GCMs (Table 2-3, Table 2-4, Figure 4-7a and Figure 4-7b). The BCSD 
results for annual precipitation are slightly wetter over BC than the selected GCMs and then all available 
GCMs in some decades post 2030, but not consistently over the whole period (Figure 4-7a). Similarly, 
one model projects more warming than the maximum of the GCM ensemble after 2070 (Figure 4-7a). 

Although results are similar between raw GCM output and BCSD results over BC, the BCSD process 
adjusts projections in sub-regions of the province to better match temperature and precipitation gradients 
not captured by GCMs that result from elevation changes or proximity to the ocean. On the South Coast, 
BCSD results are cooler and drier than raw results for CGCM3 A2 run1. In the Peace region, BCSD 
results are warmer and wetter than raw results for CGCM3 A2 run 1. The trend and variability of 
projected temperature and precipitation from the GCM is well replicated by BCSD for both regions 
(Figure 4-8 and Figure 4-9). 
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Figure 4-7. Time series (1950-2100) of Global Climate Model (BC average) anomalies from raw selected GCMs 
(dashed lines) following each of B1, A1B and A2, the Bias Corrected Spatially Disaggregated (BCSD) version 
(solid lines) of each against the range from all 22 available GCMs (grey swath) for (a) annual mean temperature (b) 
annual precipitation. Results are smoothed in time using LOESS. CANGRID historical data (black line) is shown for 
comparison. All results are shown as a difference from their 1961-1990 values. 
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Figure 4-8. Time series (1950-2100) of anomalies from raw selected CGCM3 A2 run1 (dashed line) and the Bias 
Corrected Spatially Disaggregated (BCSD) CGCM3 A2 run1 (solid line) averaged over the South Coast for (a) 
annual mean temperature and (b) annual precipitation. Results are shown smoothed in time using LOESS and 
unsmoothed. CANGRID historical data (black line) is shown for comparison. All results are shown as a difference 
from their 1961-1990 values. 
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Figure 4-9. Time series (1950-2100) of anomalies from raw selected CGCM3 A2 run1 (dashed line) and the Bias 
Corrected Spatially Disaggregated (BCSD) CGCM3 A2 run1 (solid line) averaged over the Peace Basin for (a) 
annual mean temperature and (b) annual precipitation. Results are shown smoothed in time using LOESS and 
unsmoothed. CANGRID historical data (black line) is shown for comparison. All results are shown as a difference 
from their 1961-1990 values. 
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5. Uncertainty  

No one model performs best for all conditions and problems. Uncertainty in these projections is related to 
the GCM downscaled, the gridded-observations the BCSD process is trained on, and the BCSD process 
itself. Uncertainties in the GCM are due to: (1) the future climate forcing being unknown, (2) each GCM 
differing in their response to forcing due to their different parameterizations, and (3) the future trajectory 
of natural variability being unknown because the sequence of natural variability in each run of a GCM 
will be slightly different due to small changes in the initial conditions. The gridded-observations the 
BCSD process bias corrects against is a combination of several different observational networks, each of 
which contain uncertainty due to measurement errors and quality control protocols. The creation of the 
gridded-observations depends on the time period it is created for, which alters the stations included or 
dropped from the scheme. It is also dependent on the digital elevation model used to build it, which has 
its own uncertainties. The BCSD process makes assumptions about distributions which might not fit all 
precipitation types and there is a random process of selection of daily values.  

Statistical downscaling, such as BCSD, is one of the tools available to translate large-scale GCM 
information to the local-scale. The value of this technique over uncorrected GCM output is that the 
regional response of climate change can be better assessed at 1/16°. Its strength over dynamical 
downscaling approaches is that it can be run on several GCMs without being computationally demanding. 
Its weaknesses are that it requires long and reliable observed historical data series for calibration, depends 
on the chosen predictors, does not include feedbacks in the climate system, assumes the established 
relationship between the predictor and predictand will hold in the future, and maintains the inter-annual 
variability of the GCM being downscaled which could be different from what we have seen in 
observations. 

Multiple models were selected for downscaling to allow for the range of possible futures to be explored. 
The range in projected temperatures for models run under one emissions scenario, such as B1, A1B or 
A2, gives us a sense of the range due to model uncertainty (Table 4-3; Table 4-4; Figure 4-2; Figure 4-3). 
Annual projected temperature changes can range from 1.8°C (minimum) to 3.5°C (maximum) under the 
A2 scenario on average over BC, depending on GCM. Thus, from one model to another, the difference in 
projected change can be as much as 1.7°C. The range for models run under both B1 and A1B is 1.5°C. On 
a seasonal basis, temperature differences can be even larger between BCSD downscaled GCMs. For 
example, temperature projections range by 3.0°C between the minimum and maximum values in winter 
under the A2 scenario (Table 4-4). Part of the difference between ranges for the B1, A1B and A2 
scenarios might be attributable to the HADGEM1 model being included in the A2 and A1B ensembles, 
but not in the B1 ensemble. HADGEM1 is a warmer model that would contribute to an overall increase in 
projected temperatures. Regardless, all models, run under all emissions scenarios, are in agreement that 
warming will take place across the province in all seasons (Table 4-4; Figure 4-2). 

By comparing the B1, A1B and A2 responses under the median scenario we can get a sense of the range 
in responses due to emissions scenario. For example, the median annual temperature projection under the 
A1B scenario is 0.7°C warmer than the B1 scenario on average over BC (Table 4-3). Therefore, the range 
in annual temperature anomalies from model to model (i.e., 1.7°C) is greater than from emissions 
scenario to emissions scenario in the 2050s (i.e., 0.7°C). This result would likely change for time periods 
farther in the future, such as the 2080s, when the difference between emissions scenarios are projected to 
be greater than during the 2050s (Rodenhuis et al. 2009). Annual precipitation anomalies in the 2050s can 
range from 0% to 18% under the A1B emissions scenario (Table 4-3). Under the B1 and A2 scenarios 
ranges are 9% and 12%, respectively. There is 2% or less difference between the median projected 
changes for the models run under the three emissions scenarios. Clearly, greater range results from 
multiple GCMs (i.e., 18%) than emissions scenarios on an annual basis (i.e., 2%). On a seasonal basis, 
there is greater difference between median projected changes from emissions scenario to emissions 
scenario (up to 5%) and even wider ranges between the minimum and maximum projections (Table 4-8).
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6. Conclusion  

Eight Global Climate Models (GCMs) were selected based on their availability, their relative error in 
representing historic climate over the globe, their performance according to the 'Model Climate 
Performance Index' (MCPI) over the Northern Hemisphere, and according to the MCPI and the ‘Model 
Variability Index’ (MVI) over North America and western North America. The correlation of models to 
sea level pressure in North American Regional Reanalysis (NARR) based on Self Organizing Maps over 
North America was also considered. Models were preferred if they were one of the 15 models used by 
PCIC in the Climate Overview report and one of the five models currently being used in the North 
American Regional Climate Change Assessment Program (NARCCAP). As a result of this selection 
process the following GCMS were chosen: CGCM3.1 (T47); CSIRO-Mk3.0; CCSM3; GFDL-CM2.1; 
MIROC3.2 (medres); ECHAM/MPI-OM; UKMO-HadCM3; and UKMO-HadGEM1. UKMO-HadGEM1 
did not meet the selection criteria that the other seven models had, but was included because it had been 
used for several similar studies. These models are some of the warmer models available and also the same 
models chosen by similar studies in North America. 

Projections of daily minimum and maximum temperature and precipitation for BC at 1/16° have been 
created for eight GCMs run under the B1, A1B, and A2 emissions scenarios, except HADGEM1 which 
did not have B1. These daily data can be used to drive secondary models to assess the impacts of climate 
change on biophysical features such as streamflow or tree species suitability. In comparing National 
Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) Bias 
Corrected Spatial Disaggregation (BCSD) downscaled results to gridded-observed data at the 1/16° grid-
scale over BC for the validation period (1991-2000), median temperature differences between the two 
were -0.3°C in July and -0.6°C in December. For precipitation, BCSD downscaled NCEP results 
produced differences of -4% of gridded-observations based on the median in July and 0% in December. 
Overall, results were representative of observed average temperature and total precipitation for July and 
December based on the median bias between BCSD-downscaled NCEP and gridded-observations. It 
should be noted that this technique does not maintain spatial correlations between temperature and 
precipitation as these are correct independently at the GCM resolution using quantile mapping. 

When comparing daily downscaled NCEP results to daily gridded-observations they matched the 
explained variance of the gridded-observations at the 99% confidence level for several temperature and 
precipitation indices. This is only one test of daily values produced by the BCSD method. Station data is 
not directly comparable spatially averaged gridded downscaled results or gridded-observations. Since the 
daily values are derived by resampling the historical gridded observations and adjusting them based on 
the bias-corrected, locally-scaled monthly GCM projections, this approach does not explicitly capture 
changes to daily extremes that are projected by the various GCMs. In studies that require future daily data 
to analyze droughts or flood events, other downscaling methods should be sought. 

Based on the median results of the 23 BCSD downscaled scenarios, temperature and precipitation are 
projected to change as follows by the 2050s when compared to 1961-1990. 

 

On average over BC: 

 Annually, temperature is projected to increase by 2.3°C and precipitation is projected to increase 
by 8%. 

 Warming is projected to be greatest in winter at 2.7°C and least in spring and fall at 2.1°C. 
 Precipitation increases are projected to be greatest in spring at 13% and decreases are projected 

for summer (-1%). 
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By region: 

 Annually, the Okanagan, Columbia and Peace Basins are projected to have the greatest 
temperature increases (2.5°C), while the Northwest and Peace Basin are projected to have the 
largest precipitation increases (12%). 

 In the winter, the greatest warming is projected for the Peace Basin (3.1°C), while in summer the 
greatest warming is projected for the Okanagan (3.2°C). 

 In the spring and fall, projected warming is relatively uniform across all regions. 
 Precipitation is projected to increase the most out of any region in the Peace Basin in all seasons 

except summer. Projected increases in this basin are for 19% in winter and 17% in spring and fall. 
 Decreases are projected during summer in the South Coast, Okanagan, Columbia, Fraser, and 

North Coast, while increases are projected in the Northwest (8%) and Peace Basin (4%). The 
largest projected decrease (-14%) is projected for both the South Coast and Okanagan. 

 The Northwest and Peace Basin are the only two regions where precipitation is projected to 
increase in all seasons.  
 

Overall, the spatial pattern of projected change was consistent between downscaled models within 
seasons. In the winter, warming primarily takes place in the northern portion of the province. In the 
summer, warming is more concentrated in the southeast. Warming is uniform over the province in the 
spring and fall. Precipitation is projected to increase more in the northern and eastern regions of the 
province during the winter, spring and fall, and to decrease in the southwest during the summer. GFDL2.1 
run 1 B1 has a different spatial pattern than the other models during summer, where precipitation is 
projected to decrease in the eastern portion of the province and increase in the west. 

When compared to the Climate Overview results, projections made by the eight GCMs selected in this 
study and downscaled with BCSD are warmer than those presented in the Climate Overview. This is 
likely due to the cooler models used in the Climate Overview being eliminated in the selection process.   

To test the benefits of using BCSD to downscale a GCM, BCSD results for CGCM3 A2 were compared 
to those of the un-corrected CGCM3 A2. The BCSD process was found to improve the ability of the 
CGCM3 model to represent the variability in precipitation across the province while maintaining the 
spatial pattern of change projected by CGCM3, but altered the projections of temperature change very 
little. Annual projected increases in temperature from the BCSD downscaled CGCM3 A2 scenario are 
close to the median of the eight BCSD downscaled models. Annual projected precipitation increases are 
closest to the wettest, second only to MIROC3.2 (medres) A2. The BCSD downscaled CGCM3 A2 
scenario is the second warmest scenario after HADGEM A2 in winter, the third coolest in spring, summer 
and fall and the wettest (summer) or second wettest model out of the eight models selected for 
downscaling in all seasons. Thus, CGCM3 is one of the wetter models of the ensemble and one of the 
warmest and wettest in winter. 

The contribution to the range of uncertainty of GCMs versus emissions scenarios for the 2050s was 
investigated by downscaling several GCMs, run under several emissions scenarios. The range between 
temperature and precipitation projections is greater for the multiple GCMs than it is for emissions 
scenarios both annually, and seasonally. The range in seasonal response between models is greater than 
the range in annual response. Given this, to limit the number of scenarios applied to impact modelling it 
would be more important to use multiple models than it would be to use multiple emissions scenarios in 
the 2050s. For the 2050s, the difference between projected changes for each emissions scenario is 
minimal. The course we are currently following exceeds the A2 scenario, which is the least optimistic of 
the three: B1, A1B and A2 when looking out to 2100.  
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7. Future Work  

Future work should include downscaling multiple runs of the same GCM using BCSD to test the 
influence of initial conditions in a given GCM on future projections. Additionally, BCSD should be used 
to downscale RCMs in BC. This approach removes the majority of the bias inherent in RCM outputs 
while maintaining the added information from the higher resolution physical-based projection of the 
RCM. When a hydrologic model was driven with BCSD downscaled RCM and GCM results over the 
Columbia River Basin, RCM-derived hydrology was found to be more sensitive to climate change than 
the GCM-derived hydrology (Wood et al. 2004). 

Currently, work is underway to increase the resolution of runs with the Canadian Regional Climate Model 
(CRCM) over BC to take the resolution from 45 km to 15 km a side. This will allow several simulations 
over the province to be compared to test the influence of initial conditions and the range in possible 
futures derived from one RCM. Little of this work has been done in BC to date. BC proves to be a 
challenging province to model with RCMs due to its elevation gradients and ocean influence. Results will 
help to increase confidence in the dynamical downscaling conducted over BC. 

In the case of the BCSD downscaling technique, daily data is created by resampling the observed historic 
record and adjusting it with bias corrected monthly GCM data. Therefore, changes to daily extremes are 
an artifact of changes to monthly statistics. The number of days with or without precipitation comes from 
re-sampling the historical record and is not a result of daily information from the GCM. Thus, daily 
extremes are not shown here and further studies which apply this data should consider its application 
primarily in cases where changes to monthly statistics are sought. In the future, more daily GCM data will 
be made available through the PCMDI for the IPCC Fifth Assessment Report. If this is the case, BCSD 
could be adapted to work with daily data. Alternatively, where changes in extremes are the primary 
question, other downscaling techniques might be applied, such as expanded downscaling (Bürger 1996; 
Bürger et al. 2009) or TreeGEN (Stahl et al. 2008), both of which downscale daily GCM data. However, 
neither approach is applicable for gridded fields nor over large domains like BC; instead they are 
conducted to individual stations on a per project basis. In the future, the availability of RCM data will 
also improve through the CORDEX programme: http://wcrp.ipsl.jussieu.fr/RCD_CORDEX.html 
allowing the range of uncertainty caused by different driving GCMs and RCMs to be explored more fully. 
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