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Introduc-on	
•  Enormous interest in event attribution 

–  Event and media driven 
–  Questions are mostly retrospective 

•  Requires “rapid response” science 
–  Places high demands on process understanding, data, 

models, and statistical methods 
–  Recently assessed by US National Academies of 

Science 
•  Critical aspect of the the WCRP Grand Challenge 
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Event	a(ribu-on	
•  The public asks: Did human influence on the 

climate system … 
–  Cause the event?  

•  Most studies ask: Did it … 
–  Affect its odds? 
–  Alter its magnitude? 

•  Some think we should reframe the question … 
–  Rather than “Did human influence …” (which requires 

comparison with a counterfactual world)  
–  Ask “How much (eg, of a given storm’s precipitation) is 

due to the attributed warming (eg, in the storm’s 
moisture source area)” (after Trenberth et al, 2015) 
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Most	studies	

•  Compare factual and “counterfactual” climates 
–  Counterfactual à the world that might have been if we 

had not emitted the ~600GtC that have been emitted 
since preindustrial 

•  These studies almost always 
–  Define a class of events rather than a single event 
–  Use a probabilistic approach 

•  Shepherd (2016) defines this as “risk based”  
–  Contrasts it with a “storyline” based approach 
–  i.e., analysis of the specific event that occurred 
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“Framing”	event	a(ribu-on	studies	

•  Event type  
–  Class vs individual 

•  Analysis approach 
–  “risk based” or “storyline” 

•  Event definition 
–  What spatial scale, duration, etc 

•  Which risk-based question 
–  Did climate change alter the odds, or the magnitude? 

•  What factors should be taken into account 
–  “Conditioning” 
–  e.g., coincident SST anomaly pattern, circulation, etc 

The NAS 
Report (2016) 
struggled with 
these 
distinctions 
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Risk	based	ques-ons	

•  Did human influence alter its likelihood 

 

•  Did human influence alter its magnitude  
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China’s	Summer	of	2013	

Photo: F. Zwiers (Lijiang – Black Dragon Pool) 
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How rare was JJA of 2013?	
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•  Estimated event frequency 
•  once in 270-years in control simulations  
•  once in 29-years in “reconstructed” observations 
•  once in 4.3 years relative to the climate of 2013 

•  Fraction of Attributable Risk in 2013: (p1 – p0)/p1≈ 0.984 
•  Prob of “sufficient causation”: PS=1-((1-p1)/(1-p0)) ≈ 0.23 
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Calgary	flood,	2013		

Looking towards downtown Calgary from Riverfront Avenue (June 21, 2013), courtesy Ryan L.C. Quan 
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Calgary	floods	(Teufel	et	al,	submi(ed)	
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Figure 13. Return times of (a) average May-June evapotranspiration over the northern 

Great Plains, (b) maximum 1-day and (c) 3-day May-June precipitation over southern 

Alberta, in present-day (red) and pre-industrial ensembles (blue). Gray horizontal 

lines show (a) average evapotranspiration during the 14-21 June period, (b) average 

precipitation on 20 June and (c) average precipitation during the 19-21 June period, 

for the members of the CRCM5_Ref ensemble. Black dashed lines show (b) average 

precipitation across the region on 20 June and (c) average precipitation during the 19-

21 June period, as estimated from CaPA.  
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Distribution of 
annual May-June 
maximum 1-day 
southern-Alberta 
precipitation in 
CRCM5 under 
factual and counter-
factual conditions 
(conditional on 
prevailing global 
pattern of SST 
anomalies) 

Frequency doubles (~25-yr à ~12 yr) 

Magnitude increases ~10% 

Southern Alberta MJ max 1-day precip 

FAR=PN≈0.5 
         PS≈0.04 



12 Photo: F. Zwiers (Marsh Wren) 

Some	unresolved	issues	
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Some	unresolved	issues	
•  Event characterization 

–  Class vs individual, risk-based vs storyline 
–  Individual is not completely synonymous with storyline 
–  Data assimilation approach of Hannart et al (2016) 

•  Event definition 
•  Dependence on models 
•  Counterfactual state specification uncertainty 

when conditional approach is used  
•  Selection bias 

–  Need objective event selection criteria 
•  Communications 

–  At each stage of the media and disaster response/
recovery cycle 
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Retrospec-ve	vs	prospec-ve?	
•  Most studies are prompted by specific events 
•  For the risk-based approach, we could study 

pre-defined events 
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estimates of the control temperature anomalies discussed 
in the previous paragraph and compute the FAR. Repeat-
ing this for all the pairs, we end up with a sample of FAR 
estimates from which the best estimate (50th percentile) and 
the uncertainty range (5th and 95th percentiles) are calcu-
lated. As a simpler alternative to the FAR, we also discuss 
our results in terms of changes in the probability of events.

4  Results

We first carry out an optimal fingerprinting analysis for 
each model individually by regressing simulated decadal 
temperature anomalies against the observed anomalies, 
as described in Sect. 3. Optimal fingerprinting, as applied 
here, decomposes the observations between the forced 
ANTHRO and NAT responses and internal variability. 
Figure 6 illustrates the ANTHRO and NAT scaling factors 
from analyses of changes in the annual mean, JJA and DJF 
temperature. The anthropogenic fingerprint is detected in 
all cases (scaling factors do not include zero). In most cases 

the models under- or over-estimates the ANTHRO response 
(as implied by scaling factors greater or less than unity) and 
the fingerprint needs to be scaled up or down to best match 
the observations. This scaling introduces observational con-
straints into our analysis expected to provide a more realis-
tic representation of the climate response than the one from 
unscaled model patterns. The weaker NAT fingerprint is not 
detected in the observations with the exception of seasonal 
temperature analyses with the GISS-E2-R model, though 
the signal detectability in this case is sensitive to the exact 
EOF truncation employed in the analysis. NAT scaling fac-
tors have greater uncertainties as the signal is weaker and 
hence more obscured by the effect of internal variability. 
The scaling factors from DJF analyses have moderately 
larger uncertainties compared to the ones for JJA and the 
annual mean, because of the greater land-area extent in 
the Northern Hemisphere, characterised by greater winter 
variability.

Jones et al. (2013) used several CMIP5 models (includ-
ing six of the models used here) to further partition the 
anthropogenic response between the greenhouse gas 

Fig. 8  As in Fig. 7, but for the JJA temperature. The record temperature anomaly in ANT (4.83 K) lies outside the plotted range
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agreement, except for colder regions where the signal to 
noise ratio is lower.

There are a few interesting points to make on the results 
shown in Figs. 10, 11 and 12. Firstly, it is evident that 
model uncertainty is more prominent in the FAR estimates 
for DJF, as there are more cold regions in this season. (We 
refer to “cold regions” in the paper, meaning either polar 
regions, or mid/high latitude regions during wintertime). 
The DJF estimates are also generally smaller, because the 
temperature distributions for the actual and natural climate 
are less separated (Fig. 9), which means there is a smaller 
discrepancy in the likelihood of exceeding thresholds with 
and without the effect of human influence. The smaller sep-
aration of the distributions results from the greater variabil-
ity in colder regions and the consequently smaller signal 
to noise ratio. In some cases it is not possible to estimate 
the FAR for DJF at high thresholds, as these events are so 
rare that extreme statistics can no longer provide reliable 
probability estimates. Figure 11 shows that in most regions 
the GISS-E2-R model yields notably lower estimates of 
the FAR for JJA. While all models produce a weak natural 
warming over the globe of 0.05–0.15 K during 2003–2012 

(possibly due to the recovery from preceding volcanic 
activity), it is only the NAT response of GISS-E2-R that 
is scaled up with positive scaling factors (Fig. 6b), which 
results in a warmer natural world and hence smaller FAR 
estimates. Finally, it is interesting to note that in the AMZ 
region, the FAR does not saturate to unity at high thresh-
olds, but may even decrease. While in other regions the 
PDFs with and without the anthropogenic effect have a 
similar shape, the natural world PDF in AMZ is broader. 
The FAR is therefore determined not only by a shift of the 
distribution to warmer temperatures, but also by the change 
in the PDF shape, which leads to a decrease at higher 
thresholds.

We have so far only looked at best estimates of the FAR 
for each GCM corresponding to the 50th percentile of 
the FAR distribution as discussed in Sect. 3. We will now 
consider uncertainties in the FAR represented by the 5th–
95th percentile range. We examine changes in the odds of 
a climatological 1-in-10 year event, which would provide 
a useful attribution assessment, for example, for the pur-
poses of adaptation planning. We derive temperature anom-
aly thresholds for the 1-in-10 year event in each region by 

Fig. 11  As in Fig. 10, but for the JJA temperature
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