
1 Photo: F. Zwiers 

Our	shared	responsibility	as	users	of	
sta3s3cs	and	consumers	of	results	

Francis Zwiers 
PCIC, University of Victoria 13IMSC, 9 June 2016 

Caveat	Venditor,	Lector	et	Emptor	
(Seller,	Reader	and	Buyer	Beware)	



2 Photo: F. Zwiers 

Outline	

•  Introduction 
•  Moving Windows 
•  EOF analysis 
•  Extremes 
•  Detection and Attribution 
•  Discussion 



3 Photo: F. Zwiers 

Introduc3on	

Thanks to Xuebin Zhang 
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The	strange	alterna3ve	3tle	of	this	talk	…	
•  It tries to say that everyone bears responsibility in the use 

of statistical information (producer, user, and casual 
bystander) 

•  An important part of that responsibility is to understand 
the framework within which statistical information is 
produced 

•  That framework, including the assumptions that are made, 
represents a model that provides context for the 
interpretation of the variability in the data  to be analyzed 

•  The framework does not need to be correct to be useful, 
but useful interpretation does require that it be 
understood, and that there is an appreciation of the 
degree of approximation to the real world that it entails 
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The	strange	3tle	…	
•  The assumptions are often not well understood, 

stated explicitly or discussed, and their 
importance is often not appreciated by users and 
passive observers. 

•  The concern is that this can result in the over 
interpretation of statistical findings 

•  Consider four examples – two where there is a 
reasonable appreciation of statistical limitations, 
and two where the statistical foundation seems to 
be less appreciated 
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1.	Moving	window	analyses	
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Methods	
•  Come in many flavours 
•  Sliding window correlation is often used to study the 

stability of links between snow cover and the Indian 
monsoon 

(a)

(b)

(c)

(d)

Fig. 2 Anomalies and 11-years
sliding correlations between
Eurasian snow cover [30–80N/
20W–140E] and the AIR index
for the period 1967–2005: a and
b for winter snow cover, c and d
for spring snow cover.
Horizontal dashed lines
represent the 95% confidence
level

Y. Peings, H. Douville: Influence of the Eurasian snow cover on the Indian summer monsoon variability

123

Figure 2b, Peings and Douville, 2009  

11-yr sliding window correlation between  
DJF snow cover vs JJAS All India Rainfall (1967-2005) 
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Some	concerns	…	
•  Dependence between individual correlations 
•  Low power because of small sample size 
•  Multiple testing 
•  Physical support for the interpretation of 

fluctuating correlation 
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2.	Modes	of	variability	

Photo: F. Zwiers 
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Methods	
•  Often identified using EOF analysis 
•  Typical configuration still generally has temporal 

dimension that is smaller than spatial dimension 
•  A frequent question is whether modes are mixed 

–  Modes that represent similar amounts of variance are 
mixed (any set of orthonormal vectors that span the 
same subspace are equally plausible) 

•  North’s 1982 “rule of thumb” provides some 
guidance through an approximation                     
of the sampling error of eigenvalue estimates  

δλ ~ λ(2 / n)1/2



11 Mode 

λ0.5 

Eigen values of sample covariance 
matrix estimated from  samples of 100-

dimensional N(0,I) random vectors 

Total variance 
is conserved, 
and thus for 
small n, 
eigenvalues 
are biased and 
EOFs are 
necessarily 
distorted 

Eigenspectrum	behavior	
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An	example	-	MJO	
•  Based on 7-years of data 

(selected based on tropical 
200-hPa zonal mean wind 
variability), 101 days of 
20-100 day band-pass-
filtered AVHRR OLR data 
per year 

•  Analyzed fields have 
~1250 grid cells (2.5°x2.5° 
lat-long) 

•  Modes in quadrature 
•  Explained variance likely 

over-estimated 
•  Lots of spatial noise 
•  Used to assess climate 

models (Sperber and Kim, 
2012, IPCC WG1 Ch. 9) 

798

Chapter 9 Evaluation of Climate Models
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the Indian Ocean into the western Pacific (Hung et al., 2013) and north-
ward propagation during boreal summer (Sperber et al., 2012). In addi-
tion there is evidence that models reproduce MJO characteristics in the 
east Pacific (Jiang et al., 2012b), and that, overall, there is improvement 
compared to previous generations of climate models (Waliser et al., 
2003; Lin et al., 2006; Sperber and Annamalai, 2008).

9.5.2.4 Large-Scale Monsoon Rainfall and Circulation 

Monsoons are the dominant modes of annual variation in the tropics 
(Trenberth et al., 2000; Wang and Ding, 2008), and affect weather and 
climate in numerous regions (Chapter 14). High-fidelity simulation of 
the mean monsoon and its variability is of great importance for simulat-
ing future climate impacts (Wang, 2006; Sperber et al., 2010; Colman et 
al., 2011; Turner and Annamalai, 2012). The monsoon is characterized by 
an annual reversal of the low level winds and well defined dry and wet 
seasons (Wang and Ding, 2008), and its variability is primarily connect-
ed to the MJO and ENSO (Section 9.5.3). The AR4 reported that most 
CMIP3 models poorly represent the characteristics of the monsoon and 
monsoon teleconnections (Randall et al., 2007), though improvement in 
CMIP5 has been noted for the mean climate, seasonal cycle, intrasea-
sonal and interannual variability (Sperber et al., 2012).

Figure 9.31 |  (a, b) The two leading Empirical Orthogonal Functions (EOFs) of outgoing longwave radiation (OLR) from years of strong Madden–Julian Oscillation (MJO) variability 
computed following Sperber (2003). The 20- to 100-day filtered OLR from observations and each of the CMIP5 historical simulations and the CMIP3 simulations of 20th century 
climate is projected on these two leading EOFs to obtain MJO Principal Component time series. The scatterplot (c) shows the maximum positive correlation between the resulting 
MJO Principal Components and the time lag at which it occurred for all winters (November to March). The maximum positive correlation is an indication of the coherence with 
which the MJO convection propagates from the Indian Ocean to the Maritime Continent/western Pacific, and the time lag is approximately one fourth of the period of the MJO. 
(Constructed following Sperber and Kim, 2012.)

The different monsoon systems are connected through the large-scale 
tropical circulation, offering the possibility to evaluate a models’ rep-
resentation of monsoon domain and intensity through the global mon-
soon concept (Wang and Ding, 2008; Wang et al., 2011a). The CMIP5 
multi-model ensemble generally reproduces the observed spatial pat-
terns but somewhat underestimates the extent and intensity, especial-
ly over Asia and North America (Figure 9.32). The best model has simi-
lar performance to the multi-model mean, whereas the poorest models 
fail to capture the monsoon precipitation domain and intensity over 
Asia and the western Pacific, Central America, and Australia. Fan et al. 
(2010) also show that CMIP3 simulations capture the observed trend 
of weakening of the South Asian summer circulation over the past half 
century, but are unable to reproduce the magnitude of the observed 
trend in precipitation. On longer time scales, mid-Holocene simulations 
show that even though models capture the sign of the monsoon pre-
cipitation changes, they tend to underestimate its magnitude (Bracon-
not et al., 2007b; Zhao and Harrison, 2012) 

Poor simulation of the monsoon has been attributed to cold SST biases 
over the Arabian Sea (Levine and Turner, 2012), a weak meridional 
temperature gradient (Joseph et al., 2012), unrealistic development 
of the Indian Ocean dipole (Achuthavarier et al., 2012; Boschat et al., 

Sperber, 2003; IPCC AR5 WG1 Fig 9.31 
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Some	concerns	…	
•  Underestimation of eigenvalue uncertainty 

–  North’s “rule of thumb” but does not consider temporal 
dependence 

•  Bias of eigenvalue estimates 
•  Corresponding aliasing of spatial variability within 

derived EOFs 
•  North et al (1982) warn that convergence of the 

sample covariance matrix is slow – but this is not 
well appreciated. 

•  Regularized estimators such as the Ledoit-Wolf 
(2004) estimator                        are demonstrably 
“more accurate”, but impact on modes not studied 

Σ* = ρ1I + ρ2S
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Photo: F. Zwiers 

3.	Extremes	
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Usual	assump3ons	(block	maximum)	
•  Block maxima are iid (or iid after accounting for 

dependence on covariates) 
•  Blocks are long enough to ensure that the GEV 

approximates the distribution of extremes well 

•  Determined by sampling approach 
–  Block maximum (e.g., the annual maximum) 
–  Peaks over threshold 

Methods	

•  Several methods available, but they are not in 
general use in climatology 

Spa3al	dependence	
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Precipita3on	extremes	
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•  Observational studies suggest intensification is 
occurring, although local detection is very hard (eg., 
Westra et al, 2013) 

•  Expectation of intensification is supported by  
–  attribution of warming (eg, Bindoff et al, 2013),  
–  attribution of observed increase in atmospheric water 

vapour content (eg, Santer et al, 2007), and  
–  D&A studies of change in mean precipitation (eg., 

Zhang et al., 2007; Noake et al., 2012; Polson et al, 
2013; Marvel and Bonfils, 2013; Wu et al, 2013) and 
surface salinity (eg., Pierce et al., 2012).  

•  D&A studies on extreme precipitation are very limited 
(eg, Min et al 2011, Zhang et al, 2013) 

   Precipitation extremes 
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•  Transform to a probability index  
–  Fit an extreme value distribution locally 
–  Apply probability integral transform 
–  Transformed values have approximately the uniform 

distribution 
–  Time and area averaging produces Gaussian values 

•  Apply standard D&A paradigm 
•  Examples include  

–  Min et al 2011, 2013, Zhang et al, 2013, Kim et al 2015 

   D&A on transformed extremes 



19 

Precipita3on	Extremes	
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Figure S5. Linear trends of extreme precipitation indices (PI) during 1951-2005 in 266"
observations (OBS, first row; and OBS with 9-point spatial smoothing, second row), 267"
in model simulations with combined anthropogenic and natural forcing (ALL, third 268"
row), in model simulations with natural forcing (NAT, fourth row). For each pair of 269"
panels, results are shown for annual maximum one-day (RX1day) and five-day 270"
(RX5day) precipitation amounts. For model simulations, ensemble means of trends 271"
from individual simulations are displayed. Units: probability (in percent) over 55 year 272"
period. 273"
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Observed and simulated 
changes in a probability index 
of annual maximum 1-day 
precipitation (1951-2005) 

Attributed intensification: 
 3.3% [1.1 – 5.8]% 
 5.2%/˚C [1.3 – 9.3]%/˚C 

 
Estimated waiting time for 
1950’s 20-year event: 

~15-yr in the early 2000’s  

Zhang et al., 2013 (see also Min et al 2011) 
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Some	concerns	(block	max	approach)	
•  Annual cycle 

–  How long is the block really? 
–  Does not lying within the domain of convergence 

weaken interpretation? 
–  Does using a generic goodness of fit test (standard 

practice) increase confidence materially? 
•  Event frequency 

–  How big is the block if the block size is itself stochastic 
(eg, non-zero precipitation events in a block)? 

–  What is the impact on interpretation if the expected 
event frequency (ie, average block size) is also 
affected by forcing (Schar et al, 2016)? 
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Some	concerns	…	
•  Spatial scaling 

–  Can we use model output at one scale to interpret 
changes in observations at a different scale? 

•  Temporal scaling 
–  Do models exhibit the same temporal scaling that is 

seen in observations (e.g., power law behavior in 
precipitation extremes across different accumulation 
periods)? 

–  Will temporal scaling change in the future? 
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4.	Climate	change		
detec3on	and	aSribu3on	

Photo: F. Zwiers 
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Usual	assump3ons	
•  Key forcings have been identified 
•  Signals and noise are additive 
•  Model simulation of large-scale forcing response 

patterns ok, but signal amplitude is uncertain 

•  Involve simple statistical models 
•  Complex implementation due to data volumes 

(which are both small and large) 

Methods	

à leads to a regression formulation 
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1901-1910 1901-1910 1911-1920 1911-1920 1921-1930 1921-1930 1931-1940 1931-1940 1941-1950 1941-1950 1951-1960 1951-1960 1961-1970 1961-1970 1971-1980 1971-1980 1981-1990 1981-1990 1991-2000 1991-2000 

Observations (HadCRUT4) Multi-model mean (ALL forcings) 
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That	formula3on	has	been	evolving	
•  Hasselmann (1979, 1993) 
•  Hegerl et al (1996, 1997) 
•  Tett et al (1999) 

! = !∗ + !!
!! = !!∗ + !!!
!∗ = !!

!

!!!
!!∗
!

•  Allan and Stott (2003) 
•  Huntingford et al (2006) 
•  Hegerl and Zwiers (2011) 

•  Ribes et al (2013a, 2013b) 
•  Hannart et al (2014) 
•  Hannart (2016) 

! = !∗ + !!
!! = !!∗ + !!!
!∗ = !!∗

!

!!!

! •  Ribes et al (2016) 

! = !!!!
!

!!!
+ !!
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Arc3c	temperature	

Photo: F. Zwiers 
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Arc3c	temperature	change	–	1913-2012	
NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2524 LETTERS
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Figure 1 | Simulated and observed 1913–2012 temperature trends over the Arctic. a–d, CRUTEM4 observations (a), and CMIP5 multi-model ensemble
averages based on 9 models and 35 ensemble members for each type of forcing: ALL (b), GHG (c) and OANT (d). Land areas with no data are shaded dark
grey and ocean areas are shaded the lighter grey indicated by ‘O’ on the colour scale. Trends are calculated from 5-yr means. ALL corresponds to
simulations with all major anthropogenic and natural forcings, GHG corresponds to simulations forced by greenhouse-gas changes, and OANT
corresponds to simulations forced by anthropogenic forcings other than greenhouse gases.
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Figure 2 | Simulated and observed Arctic temperature anomalies.
Observed 5-yr mean Arctic mean temperature anomalies (black) are
compared with the mean simulated response to all anthropogenic and
natural forcings (red), greenhouse-gas changes (green), other
anthropogenic forcings (orange) and natural forcings (blue). Red shading
and blue dashed lines represent the 5–95% uncertainty ranges
corresponding to ALL and NAT responses respectively.

twentieth century. The observed Arctic mean temperature generally
falls within the 90% range of the individual ALL simulations.
As expected, the ensemble mean of the GHG simulations warms
monotonically from the late 1950s onwards. In contrast, the

NAT simulations show interannual variability with no significant
long-term trends. The estimated response to OANT forcing exhibits
cooling from the late 1950s to the late 1970s, reflecting changes in
aerosol forcing during this period13, but shows little change during
recent decades.

We quantify the separate contributions from greenhouse gases
(GHG), other anthropogenic forcing agents (OANT), and natural
forcings (NAT) to observed Arctic temperature change using an
optimal fingerprinting approach14. This entails regressing observed
temperature anomalies onto model-simulated ensemble mean
responses to GHG, OANT and NAT forcing using a total least-
squares algorithm. The resulting scaling factors, which scale the
simulated responses to best reproduce the observed changes, and
their 90% confidence intervals are shown in Fig. 3a for both
the multi-model ensemble mean responses and the individual-
model ensemble mean responses. A positive scaling factor that is
inconsistent with zero implies that the signal is detected at the
5% significance level. Scaling factors close to unity with small
uncertainty ranges imply good agreement between observed and
model-simulated changes. The multi-model GHG and OANT
responses are both robustly detected, with aGHG scaling factor very
close to one, and an OANT scaling factor above one, suggesting
some under-estimation of the OANT response in the multi-model
mean. Most individual-model GHG and OANT signals are also
detected. In contrast, the multi-model response to natural forcing
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Figure 1 | Simulated and observed 1913–2012 temperature trends over the Arctic. a–d, CRUTEM4 observations (a), and CMIP5 multi-model ensemble
averages based on 9 models and 35 ensemble members for each type of forcing: ALL (b), GHG (c) and OANT (d). Land areas with no data are shaded dark
grey and ocean areas are shaded the lighter grey indicated by ‘O’ on the colour scale. Trends are calculated from 5-yr means. ALL corresponds to
simulations with all major anthropogenic and natural forcings, GHG corresponds to simulations forced by greenhouse-gas changes, and OANT
corresponds to simulations forced by anthropogenic forcings other than greenhouse gases.
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Observed 5-yr mean Arctic mean temperature anomalies (black) are
compared with the mean simulated response to all anthropogenic and
natural forcings (red), greenhouse-gas changes (green), other
anthropogenic forcings (orange) and natural forcings (blue). Red shading
and blue dashed lines represent the 5–95% uncertainty ranges
corresponding to ALL and NAT responses respectively.

twentieth century. The observed Arctic mean temperature generally
falls within the 90% range of the individual ALL simulations.
As expected, the ensemble mean of the GHG simulations warms
monotonically from the late 1950s onwards. In contrast, the

NAT simulations show interannual variability with no significant
long-term trends. The estimated response to OANT forcing exhibits
cooling from the late 1950s to the late 1970s, reflecting changes in
aerosol forcing during this period13, but shows little change during
recent decades.

We quantify the separate contributions from greenhouse gases
(GHG), other anthropogenic forcing agents (OANT), and natural
forcings (NAT) to observed Arctic temperature change using an
optimal fingerprinting approach14. This entails regressing observed
temperature anomalies onto model-simulated ensemble mean
responses to GHG, OANT and NAT forcing using a total least-
squares algorithm. The resulting scaling factors, which scale the
simulated responses to best reproduce the observed changes, and
their 90% confidence intervals are shown in Fig. 3a for both
the multi-model ensemble mean responses and the individual-
model ensemble mean responses. A positive scaling factor that is
inconsistent with zero implies that the signal is detected at the
5% significance level. Scaling factors close to unity with small
uncertainty ranges imply good agreement between observed and
model-simulated changes. The multi-model GHG and OANT
responses are both robustly detected, with aGHG scaling factor very
close to one, and an OANT scaling factor above one, suggesting
some under-estimation of the OANT response in the multi-model
mean. Most individual-model GHG and OANT signals are also
detected. In contrast, the multi-model response to natural forcing

NATURE CLIMATE CHANGE | VOL 5 | MARCH 2015 | www.nature.com/natureclimatechange 247

Observed trends NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2524 LETTERS

0°

100° E

K K
KK

>3.0
3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0

−0.3
−0.6
−0.9
−1.2
−1.5
−1.8
−2.1
−2.4
−2.7
−3.0
< −3.0

−3.0 −3.0

O

Obs

0°

100° E
>3.0 
3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0

−0.3
−0.6
−0.9
−1.2
−1.5
−1.8
−2.1
−2.4
−2.7
−3.0
<−3.0 
O

ALL

0°

100° E
>3.0
3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0

−0.3
−0.6
−0.9
−1.2
−1.5
−1.8
−2.1
−2.4
−2.7
−3.0
< 
O

GHG

0°

100° E
>3.0
3.0
2.7
2.4
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0

−0.3
−0.6
−0.9
−1.2
−1.5
−1.8
−2.1
−2.4
−2.7
−3.0
< 
O

OANT

a b

c d

100° W 100° W

100° W 100° W

Figure 1 | Simulated and observed 1913–2012 temperature trends over the Arctic. a–d, CRUTEM4 observations (a), and CMIP5 multi-model ensemble
averages based on 9 models and 35 ensemble members for each type of forcing: ALL (b), GHG (c) and OANT (d). Land areas with no data are shaded dark
grey and ocean areas are shaded the lighter grey indicated by ‘O’ on the colour scale. Trends are calculated from 5-yr means. ALL corresponds to
simulations with all major anthropogenic and natural forcings, GHG corresponds to simulations forced by greenhouse-gas changes, and OANT
corresponds to simulations forced by anthropogenic forcings other than greenhouse gases.
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Figure 2 | Simulated and observed Arctic temperature anomalies.
Observed 5-yr mean Arctic mean temperature anomalies (black) are
compared with the mean simulated response to all anthropogenic and
natural forcings (red), greenhouse-gas changes (green), other
anthropogenic forcings (orange) and natural forcings (blue). Red shading
and blue dashed lines represent the 5–95% uncertainty ranges
corresponding to ALL and NAT responses respectively.

twentieth century. The observed Arctic mean temperature generally
falls within the 90% range of the individual ALL simulations.
As expected, the ensemble mean of the GHG simulations warms
monotonically from the late 1950s onwards. In contrast, the

NAT simulations show interannual variability with no significant
long-term trends. The estimated response to OANT forcing exhibits
cooling from the late 1950s to the late 1970s, reflecting changes in
aerosol forcing during this period13, but shows little change during
recent decades.

We quantify the separate contributions from greenhouse gases
(GHG), other anthropogenic forcing agents (OANT), and natural
forcings (NAT) to observed Arctic temperature change using an
optimal fingerprinting approach14. This entails regressing observed
temperature anomalies onto model-simulated ensemble mean
responses to GHG, OANT and NAT forcing using a total least-
squares algorithm. The resulting scaling factors, which scale the
simulated responses to best reproduce the observed changes, and
their 90% confidence intervals are shown in Fig. 3a for both
the multi-model ensemble mean responses and the individual-
model ensemble mean responses. A positive scaling factor that is
inconsistent with zero implies that the signal is detected at the
5% significance level. Scaling factors close to unity with small
uncertainty ranges imply good agreement between observed and
model-simulated changes. The multi-model GHG and OANT
responses are both robustly detected, with aGHG scaling factor very
close to one, and an OANT scaling factor above one, suggesting
some under-estimation of the OANT response in the multi-model
mean. Most individual-model GHG and OANT signals are also
detected. In contrast, the multi-model response to natural forcing
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Figure 1 | Simulated and observed 1913–2012 temperature trends over the Arctic. a–d, CRUTEM4 observations (a), and CMIP5 multi-model ensemble
averages based on 9 models and 35 ensemble members for each type of forcing: ALL (b), GHG (c) and OANT (d). Land areas with no data are shaded dark
grey and ocean areas are shaded the lighter grey indicated by ‘O’ on the colour scale. Trends are calculated from 5-yr means. ALL corresponds to
simulations with all major anthropogenic and natural forcings, GHG corresponds to simulations forced by greenhouse-gas changes, and OANT
corresponds to simulations forced by anthropogenic forcings other than greenhouse gases.
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Figure 2 | Simulated and observed Arctic temperature anomalies.
Observed 5-yr mean Arctic mean temperature anomalies (black) are
compared with the mean simulated response to all anthropogenic and
natural forcings (red), greenhouse-gas changes (green), other
anthropogenic forcings (orange) and natural forcings (blue). Red shading
and blue dashed lines represent the 5–95% uncertainty ranges
corresponding to ALL and NAT responses respectively.

twentieth century. The observed Arctic mean temperature generally
falls within the 90% range of the individual ALL simulations.
As expected, the ensemble mean of the GHG simulations warms
monotonically from the late 1950s onwards. In contrast, the

NAT simulations show interannual variability with no significant
long-term trends. The estimated response to OANT forcing exhibits
cooling from the late 1950s to the late 1970s, reflecting changes in
aerosol forcing during this period13, but shows little change during
recent decades.

We quantify the separate contributions from greenhouse gases
(GHG), other anthropogenic forcing agents (OANT), and natural
forcings (NAT) to observed Arctic temperature change using an
optimal fingerprinting approach14. This entails regressing observed
temperature anomalies onto model-simulated ensemble mean
responses to GHG, OANT and NAT forcing using a total least-
squares algorithm. The resulting scaling factors, which scale the
simulated responses to best reproduce the observed changes, and
their 90% confidence intervals are shown in Fig. 3a for both
the multi-model ensemble mean responses and the individual-
model ensemble mean responses. A positive scaling factor that is
inconsistent with zero implies that the signal is detected at the
5% significance level. Scaling factors close to unity with small
uncertainty ranges imply good agreement between observed and
model-simulated changes. The multi-model GHG and OANT
responses are both robustly detected, with aGHG scaling factor very
close to one, and an OANT scaling factor above one, suggesting
some under-estimation of the OANT response in the multi-model
mean. Most individual-model GHG and OANT signals are also
detected. In contrast, the multi-model response to natural forcing
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Figure 1 | Simulated and observed 1913–2012 temperature trends over the Arctic. a–d, CRUTEM4 observations (a), and CMIP5 multi-model ensemble
averages based on 9 models and 35 ensemble members for each type of forcing: ALL (b), GHG (c) and OANT (d). Land areas with no data are shaded dark
grey and ocean areas are shaded the lighter grey indicated by ‘O’ on the colour scale. Trends are calculated from 5-yr means. ALL corresponds to
simulations with all major anthropogenic and natural forcings, GHG corresponds to simulations forced by greenhouse-gas changes, and OANT
corresponds to simulations forced by anthropogenic forcings other than greenhouse gases.
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Figure 2 | Simulated and observed Arctic temperature anomalies.
Observed 5-yr mean Arctic mean temperature anomalies (black) are
compared with the mean simulated response to all anthropogenic and
natural forcings (red), greenhouse-gas changes (green), other
anthropogenic forcings (orange) and natural forcings (blue). Red shading
and blue dashed lines represent the 5–95% uncertainty ranges
corresponding to ALL and NAT responses respectively.

twentieth century. The observed Arctic mean temperature generally
falls within the 90% range of the individual ALL simulations.
As expected, the ensemble mean of the GHG simulations warms
monotonically from the late 1950s onwards. In contrast, the

NAT simulations show interannual variability with no significant
long-term trends. The estimated response to OANT forcing exhibits
cooling from the late 1950s to the late 1970s, reflecting changes in
aerosol forcing during this period13, but shows little change during
recent decades.

We quantify the separate contributions from greenhouse gases
(GHG), other anthropogenic forcing agents (OANT), and natural
forcings (NAT) to observed Arctic temperature change using an
optimal fingerprinting approach14. This entails regressing observed
temperature anomalies onto model-simulated ensemble mean
responses to GHG, OANT and NAT forcing using a total least-
squares algorithm. The resulting scaling factors, which scale the
simulated responses to best reproduce the observed changes, and
their 90% confidence intervals are shown in Fig. 3a for both
the multi-model ensemble mean responses and the individual-
model ensemble mean responses. A positive scaling factor that is
inconsistent with zero implies that the signal is detected at the
5% significance level. Scaling factors close to unity with small
uncertainty ranges imply good agreement between observed and
model-simulated changes. The multi-model GHG and OANT
responses are both robustly detected, with aGHG scaling factor very
close to one, and an OANT scaling factor above one, suggesting
some under-estimation of the OANT response in the multi-model
mean. Most individual-model GHG and OANT signals are also
detected. In contrast, the multi-model response to natural forcing
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Figure 1 | Simulated and observed 1913–2012 temperature trends over the Arctic. a–d, CRUTEM4 observations (a), and CMIP5 multi-model ensemble
averages based on 9 models and 35 ensemble members for each type of forcing: ALL (b), GHG (c) and OANT (d). Land areas with no data are shaded dark
grey and ocean areas are shaded the lighter grey indicated by ‘O’ on the colour scale. Trends are calculated from 5-yr means. ALL corresponds to
simulations with all major anthropogenic and natural forcings, GHG corresponds to simulations forced by greenhouse-gas changes, and OANT
corresponds to simulations forced by anthropogenic forcings other than greenhouse gases.
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Figure 2 | Simulated and observed Arctic temperature anomalies.
Observed 5-yr mean Arctic mean temperature anomalies (black) are
compared with the mean simulated response to all anthropogenic and
natural forcings (red), greenhouse-gas changes (green), other
anthropogenic forcings (orange) and natural forcings (blue). Red shading
and blue dashed lines represent the 5–95% uncertainty ranges
corresponding to ALL and NAT responses respectively.

twentieth century. The observed Arctic mean temperature generally
falls within the 90% range of the individual ALL simulations.
As expected, the ensemble mean of the GHG simulations warms
monotonically from the late 1950s onwards. In contrast, the

NAT simulations show interannual variability with no significant
long-term trends. The estimated response to OANT forcing exhibits
cooling from the late 1950s to the late 1970s, reflecting changes in
aerosol forcing during this period13, but shows little change during
recent decades.

We quantify the separate contributions from greenhouse gases
(GHG), other anthropogenic forcing agents (OANT), and natural
forcings (NAT) to observed Arctic temperature change using an
optimal fingerprinting approach14. This entails regressing observed
temperature anomalies onto model-simulated ensemble mean
responses to GHG, OANT and NAT forcing using a total least-
squares algorithm. The resulting scaling factors, which scale the
simulated responses to best reproduce the observed changes, and
their 90% confidence intervals are shown in Fig. 3a for both
the multi-model ensemble mean responses and the individual-
model ensemble mean responses. A positive scaling factor that is
inconsistent with zero implies that the signal is detected at the
5% significance level. Scaling factors close to unity with small
uncertainty ranges imply good agreement between observed and
model-simulated changes. The multi-model GHG and OANT
responses are both robustly detected, with aGHG scaling factor very
close to one, and an OANT scaling factor above one, suggesting
some under-estimation of the OANT response in the multi-model
mean. Most individual-model GHG and OANT signals are also
detected. In contrast, the multi-model response to natural forcing
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Figure 1 | Simulated and observed 1913–2012 temperature trends over the Arctic. a–d, CRUTEM4 observations (a), and CMIP5 multi-model ensemble
averages based on 9 models and 35 ensemble members for each type of forcing: ALL (b), GHG (c) and OANT (d). Land areas with no data are shaded dark
grey and ocean areas are shaded the lighter grey indicated by ‘O’ on the colour scale. Trends are calculated from 5-yr means. ALL corresponds to
simulations with all major anthropogenic and natural forcings, GHG corresponds to simulations forced by greenhouse-gas changes, and OANT
corresponds to simulations forced by anthropogenic forcings other than greenhouse gases.
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Figure 2 | Simulated and observed Arctic temperature anomalies.
Observed 5-yr mean Arctic mean temperature anomalies (black) are
compared with the mean simulated response to all anthropogenic and
natural forcings (red), greenhouse-gas changes (green), other
anthropogenic forcings (orange) and natural forcings (blue). Red shading
and blue dashed lines represent the 5–95% uncertainty ranges
corresponding to ALL and NAT responses respectively.

twentieth century. The observed Arctic mean temperature generally
falls within the 90% range of the individual ALL simulations.
As expected, the ensemble mean of the GHG simulations warms
monotonically from the late 1950s onwards. In contrast, the

NAT simulations show interannual variability with no significant
long-term trends. The estimated response to OANT forcing exhibits
cooling from the late 1950s to the late 1970s, reflecting changes in
aerosol forcing during this period13, but shows little change during
recent decades.

We quantify the separate contributions from greenhouse gases
(GHG), other anthropogenic forcing agents (OANT), and natural
forcings (NAT) to observed Arctic temperature change using an
optimal fingerprinting approach14. This entails regressing observed
temperature anomalies onto model-simulated ensemble mean
responses to GHG, OANT and NAT forcing using a total least-
squares algorithm. The resulting scaling factors, which scale the
simulated responses to best reproduce the observed changes, and
their 90% confidence intervals are shown in Fig. 3a for both
the multi-model ensemble mean responses and the individual-
model ensemble mean responses. A positive scaling factor that is
inconsistent with zero implies that the signal is detected at the
5% significance level. Scaling factors close to unity with small
uncertainty ranges imply good agreement between observed and
model-simulated changes. The multi-model GHG and OANT
responses are both robustly detected, with aGHG scaling factor very
close to one, and an OANT scaling factor above one, suggesting
some under-estimation of the OANT response in the multi-model
mean. Most individual-model GHG and OANT signals are also
detected. In contrast, the multi-model response to natural forcing
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Figure 3 | Scaling factors by which the simulated Arctic temperature response to GHG, OANT and NAT should be multiplied to best match observations
and corresponding attributable temperature trends. a, Scaling factors are derived from regressions of observed 5-yr Arctic mean temperature anomalies
over the 1913–2012 period onto the simulated responses to GHG, OANT and NAT forcings, from individual CMIP5 models and the multi-model mean;
5–95% confidence intervals are shown by bars and corresponding best estimates are represented by triangles. Scaling factors inconsistent with zero
indicate a detectable response to the forcing concerned. b, Corresponding attributable temperature trends (in K per 100 yr). The solid horizontal line
indicates the observed Arctic-average temperature trend.

is not robustly detected, although it is detected using four of the
models individually. The estimates of the responses to external
forcing from single models are more uncertain than multi-model
response estimates owing to smaller ensemble sizes, which mean
that single-model response estimates are more strongly a�ected
by internal variability, as well as model uncertainty7. The residual
consistency test15 is passed in all but two cases (CNRM-CM5 and
GISS-E2-H), indicating that the residual variability that remains in
the observations after removing the scaled responses is consistent
with internal variability in the region as simulated in the climate
model control simulations. To assess the sensitivity of the results
to spatial coverage we also performed the analysis for the region
poleward of 60� N (Supplementary Fig. 1), obtaining consistent
results (Supplementary Fig. 2). Changing the criterion for the
inclusion of grid boxes from a minimum 50% land fraction to at
least 95% land fraction, which removes most coastal grid boxes that
extend over water-covered areas, had negligible impact onGHGand
OANT detection.

Warming trends over 1913–2012 attributable to GHG, OANT
and NAT are obtained by multiplying the trends in the multi-model
forced responses by the estimated scaling factors (Fig. 3b). On
the basis of the multi-model responses, it is estimated that GHGs
alone would have warmed the Arctic by 3 �C [2–4 �C] over the past
century, and that this has been o�set by 1.8 �C [1.3–2.2 �C]of cooling
induced by OANT forcing, to produce a net warming e�ect that

is very close to the observed warming of 1.2 �C. Natural forcing
(NAT) has not contributed to the observed long-term warming
in a discernible way. To assess the robustness of our findings, we
conducted a similar analysis for individual seasons as shown in
Supplementary Fig. 3. The individual responses to greenhouse gases
and other anthropogenic forcings are detected in all seasons. On
the basis of the best estimates of attributed temperature changes,
OANT forcing is estimated to have o�set approximately 60% of
the estimated GHG-induced warming in the Arctic over the period
1913–2012. This is substantially greater than on the global scale, for
which one set of estimates of attributable GHG, OANT and NAT
trends suggests that about 5% of the GHG-induced warming over
the period 1901–2010 (and about 27% for 1951–2010) may have
been o�set by cooling from OANT (ref. 8).

To further evaluate the robustness of our findings, we re-
peat our analysis with two additional observational data sets:
the Goddard Institute for Space Studies (GISS) surface tempera-
ture data set12 (Supplementary Fig. 4), and Merged Land–Ocean
Surface Temperature analysis (MLOST) data set provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web-
site at http://www.esrl.noaa.gov/psd (ref. 16; Supplementary Fig. 5).
These data sets were also assessed in the Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment Report17. Unlike
CRUTEM4, GISS and MLOST employ infilling techniques for
some locations with no station data and to estimate surface air
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Figure 3 | Scaling factors by which the simulated Arctic temperature response to GHG, OANT and NAT should be multiplied to best match observations
and corresponding attributable temperature trends. a, Scaling factors are derived from regressions of observed 5-yr Arctic mean temperature anomalies
over the 1913–2012 period onto the simulated responses to GHG, OANT and NAT forcings, from individual CMIP5 models and the multi-model mean;
5–95% confidence intervals are shown by bars and corresponding best estimates are represented by triangles. Scaling factors inconsistent with zero
indicate a detectable response to the forcing concerned. b, Corresponding attributable temperature trends (in K per 100 yr). The solid horizontal line
indicates the observed Arctic-average temperature trend.

is not robustly detected, although it is detected using four of the
models individually. The estimates of the responses to external
forcing from single models are more uncertain than multi-model
response estimates owing to smaller ensemble sizes, which mean
that single-model response estimates are more strongly a�ected
by internal variability, as well as model uncertainty7. The residual
consistency test15 is passed in all but two cases (CNRM-CM5 and
GISS-E2-H), indicating that the residual variability that remains in
the observations after removing the scaled responses is consistent
with internal variability in the region as simulated in the climate
model control simulations. To assess the sensitivity of the results
to spatial coverage we also performed the analysis for the region
poleward of 60� N (Supplementary Fig. 1), obtaining consistent
results (Supplementary Fig. 2). Changing the criterion for the
inclusion of grid boxes from a minimum 50% land fraction to at
least 95% land fraction, which removes most coastal grid boxes that
extend over water-covered areas, had negligible impact onGHGand
OANT detection.

Warming trends over 1913–2012 attributable to GHG, OANT
and NAT are obtained by multiplying the trends in the multi-model
forced responses by the estimated scaling factors (Fig. 3b). On
the basis of the multi-model responses, it is estimated that GHGs
alone would have warmed the Arctic by 3 �C [2–4 �C] over the past
century, and that this has been o�set by 1.8 �C [1.3–2.2 �C]of cooling
induced by OANT forcing, to produce a net warming e�ect that

is very close to the observed warming of 1.2 �C. Natural forcing
(NAT) has not contributed to the observed long-term warming
in a discernible way. To assess the robustness of our findings, we
conducted a similar analysis for individual seasons as shown in
Supplementary Fig. 3. The individual responses to greenhouse gases
and other anthropogenic forcings are detected in all seasons. On
the basis of the best estimates of attributed temperature changes,
OANT forcing is estimated to have o�set approximately 60% of
the estimated GHG-induced warming in the Arctic over the period
1913–2012. This is substantially greater than on the global scale, for
which one set of estimates of attributable GHG, OANT and NAT
trends suggests that about 5% of the GHG-induced warming over
the period 1901–2010 (and about 27% for 1951–2010) may have
been o�set by cooling from OANT (ref. 8).

To further evaluate the robustness of our findings, we re-
peat our analysis with two additional observational data sets:
the Goddard Institute for Space Studies (GISS) surface tempera-
ture data set12 (Supplementary Fig. 4), and Merged Land–Ocean
Surface Temperature analysis (MLOST) data set provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web-
site at http://www.esrl.noaa.gov/psd (ref. 16; Supplementary Fig. 5).
These data sets were also assessed in the Intergovernmental Panel
on Climate Change (IPCC) Fifth Assessment Report17. Unlike
CRUTEM4, GISS and MLOST employ infilling techniques for
some locations with no station data and to estimate surface air
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Some	concerns	
•  Most studies implicitly assume Gaussian noise 

(generally not a large concern) 

•  Sampling variability in the estimation of the noise 
covariance matrix is not accounted for well 
–  Hannart (2016) proposes a solution 

•  Most studies treat inter-model differences as 
sampling variability equivalent to internal variability 
–  Hannart et al (2014) proposes a partial solution 
–  Ribes et al (2016) propose an alternative approach 
–  In reality, we do not have a comprehensive statistical 

framework that allows us to describe how the available 
ensembles of opportunity have been obtained 
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Some	concerns	…	
•  Many studies still use ad-hoc methods for covariance 

matrix regularization (e.g., EOF-truncation) 
–  Some now use better approaches (e.g., the Ledoit-

Wolf (2004) estimator) following Ribes et al (2013a, 
2013b) 

•  Many studies do not discuss basic assumptions 
–  Key forcings have been identified (and thus there are 

no other confounding influences) 
–  Additivity of signals and noise, or dependence of noise 

on mean state 
•  Tendency to attribute based only on statistical 

evidence (see discussion in Mitchell et al., 2001) 
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Conclusions	

Photo: F. Zwiers 
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Conclusions	
•  Evident that some areas have been thought 

about much more deeply than others 
•  We should report more completely on methods 

and assumptions 
–  The statistical framework does not need to be perfect 
–  But the context for statistical inference should be well 

understood 
–  We sometimes use methods without being clear about 

the statistical model we are using (eg, event attribution) 
•  Users bear responsibility as good consumers of 

the results of our analyses 
–  Important, because the costs of application are often 

borne broadly 


