Projecting future extreme streamflow for the Fraser River: a nonstationary extreme value analysis approach

13IMSC, 10 June 2016 Rajesh R. Shrestha, Alex J. Cannon, Markus A. Schnorbus, Francis W. Zwiers (Shrestha et al., 2016, in revision)

Outline

- Background
- CMIP5 based projections

ale to

Discussion

Fraser River Basin

Monthly mean discharge, 1970's vs 2080's rcp8.5, rcp4.5, rcp2.6

Schnorbus and Cannon, 2014

Lower Fraser River Flood Plain

• Hope

Annual max discharge, Fraser at Hope

Alexandra Bridge, 44km north of Hope

1863

Figure 2.7: Alexandra Bridge Completed in 1863

Source - Northwest Hydraulic Consultants / BC Ministry of Environment, 2008

Alexandra Bridge, 44km north of Hope

1894

Source – Northwest Hydraulic Consultants / BC Ministry of Environment, 2008

Maximum discharge frequency

Source – Northwest Hydraulic Consultants / BC Ministry of Environment, 2008

VIC/emulator based projections

Photo: F. Zwiers (Yukon River)

Nonstationary Extremes Modelling

Consideration of Nonstationarity

Generalized Extreme Value (GEV) distribution

$$f(z,\theta) = \exp\left[-\left\{1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right\}^{-1/\xi}\right]$$
$$\xi \neq 0, \qquad 1 + \xi\left(\frac{x-\mu}{\sigma}\right) > 0$$

where,

 $\theta = (\mu, \sigma, \xi)$ are the location (μ) , scale $(\sigma > 0)$ and shape (ξ)

Nonstationarity is represented by making GEV parameters dependent upon climate state
→ Achieved using neural nets (details in Shrestha, et al, 2016, submitted)

Evaluation of nonstationary model skill

Predictors – DJF and MAM T and P Training data – CMIP3 predictors, CMIP3 driven VIC, 1961-2098, A1B (8 GCMs) and B1 (7 GCMs) Evaluation data – as above, except A2 (8 GCMs) Location and scale parameters set to be predictor dependent

Changes in Q2, Q10, Q100

Selected model retrained with all CMIP3 Applied to CMIP3, and subsequently to CMIP5

Discharge [m³/s]

Q2

Projected Change in Flow Quantiles (CMIP5)

RCP 8.5

Projected Change in Flow Quantiles (CMIP5)

Projected Change in Return Values (CMIP5)

RCP 8.5

2051-2060

2051-2060

0.03 0.02 2081-2090

14000

2081-2090

0.01 0.007 0.005

100 150 200

200

180

160

140

120

100

80

60

40

20

1894

1948

-1972

1950

2021-2030

2021-2030

20

40 60

0.07 0.05

Assessing Fraser River flood risk

Discussion

The and the sure bit

Discussion

- Is 1894 more or less likely today than historically?
- Design criteria flood protection in the Lower Fraser still largely based in 1894 (although recently updated in 2014)
- Any increase in magnitude/frequency would be compounded with sea-level rise
- What physical process would allow magnitude to increase at very low frequencies?
- This seems a critical "event attribution"/risk assessment problem given the population and infrastructure at risk

Questions?

Photo: F. Zwiers