GENERAL OVERVIEW
British Columbia’s climate exhibits large variations over short distances, due to complex topography.
Long-term historical trends show warming, more rapid for night-time low temperatures than day-time highs and more rapid in winter than summer. Precipitation trends are less certain due to data limitations and also exhibit increases, except in the winter season when large variability results in trends that depend highly on the period considered.
Further warming and precipitation changes are projected throughout the 21st century. The magnitude of the projected warming is relatively large compared to historical variability. Some possible consequences of these projected changes on resource operations are considered.

ABOUT THIS REGION
The Thompson/Okanagan Region, with a population of just over 500,000, is in south-central British Columbia (Figure 1). The region has extremely varied terrain and includes parts of major drainage basins, including the Fraser, Thompson and Okanagan. Owing to the complex topography, which includes parts of the Cascade and Columbia Ranges as well as the Okanagan Highland, the area’s climate varies considerably over short distances. Also, two major Pacific climate patterns—El Niño and the Pacific Decadal Oscillation—exert their influence over the region’s year-to-year variability.

Figure 1: Winter precipitation for the region. The region is bounded in grey and the red box shows its location in BC.

Grassland and ponderosa pine forests occur in the driest areas of the region while interior Douglas-fir, lodgepole pine and white and Englemann spruce dominate much of the forested area. Subalpine fir and alpine communities occur at the high elevations. Interior western hemlock and western redcedar forests occur at lower elevations in the wetter, eastern valleys. The economy is largely based around agriculture, forestry, mining and technology.

ABOUT THIS SERIES
There is a strong scientific consensus that the Earth’s climate is changing, primarily due to greenhouse gas emissions. This series of climate summaries, for the eight resource regions of British Columbia, is meant to help inform readers about past climate and future projected changes. It is intended that the series will be updated with new information as research progresses.
Precipitation is historically greatest in the autumn and winter seasons, and least in the spring. Areas with the least winter precipitation historically (less than 100 mm) include the rainshadow of the Coast Mountains as far east as Kamloops and much of the Okanagan valley (Figure 1). In contrast, the western edge and northeastern portion of the region include several locations with winter precipitation over 500 mm and at the highest elevations over 1000 mm. There are large interannual variations in seasonal and annual precipitation.

HISTORICAL TRENDS
The historical annual trend (based on the CANGRID dataset\(^1\)) indicates that just over 1 °C of warming has already occurred during the 20\(^{th}\) century. Summer and winter trends are plotted in Figures 2 and 3, while trends for all seasons are provided in Tables 1 and 2. The warming trend is greater over the 1951-2009 period. These trends are regional averages. In regions with complex topography, trends could vary considerably with elevation\(^1\).

Warming has occurred in all seasons. In most cases, trends are large relative to historical variability, as indicated by statistical significance. The historical mean seasonal precipitation for the region is greatest in the winter (about 220 mm). Compared to other regions of British Columbia, precipitation is fairly uniform across the region, with the exception of slightly larger precipitation amounts in mountainous terrain along some of the edges of the region. However, precipitation varies considerably from year to year, as shown in Figure 3.

Table 1: Temperature Trends (°C per decade) for the Thomson/Okanagan Region

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring (MAM)</td>
<td>0.12</td>
<td>0.03 to 0.20</td>
<td>0.24</td>
<td>0.03 to 0.45</td>
</tr>
<tr>
<td>Summer (JJA)</td>
<td>0.10</td>
<td>0.06 to 0.15</td>
<td>0.24</td>
<td>0.10 to 0.38</td>
</tr>
<tr>
<td>Autumn (SON)</td>
<td>0.07</td>
<td>0.00 to 0.14</td>
<td>0.07</td>
<td>-0.13 to 0.28</td>
</tr>
<tr>
<td>Winter (DJF)</td>
<td>0.18</td>
<td>0.05 to 0.30</td>
<td>0.21</td>
<td>-0.09 to 0.49</td>
</tr>
<tr>
<td>Annual</td>
<td>0.12</td>
<td>0.07 to 0.18</td>
<td>0.21</td>
<td>0.09 to 0.32</td>
</tr>
</tbody>
</table>

\(^a\)The reported trend is the trend that best describes the change over time in the observations. **Bold** indicates a trend that is statistically significant at the 5% significance level. Multiply the trend by 5 or 10 to get the total amount of change over a 50 or 100-year period, respectively.
Precipitation in the region has been increasing over both time periods during all seasons, with the exception of 1951-2009 winter precipitation, which has a negative trend. Low confidence in precipitation observations in the early part of the century implies a need for caution in interpreting the difference between short- and long-term winter precipitation trends. Large year-to-year and decade-to-decade variability in winter precipitation and the choice of time period used for fitting trends also affect this result.

FUTURE CLIMATE PROJECTIONS

Climate models project warming throughout the 21st century for all seasons that is large compared to historical variability (Figure 4). The black bar shows historical interannual variability as represented by ± one standard deviation of temperature around the 1961-1990 average (vertical line). The projected change in the average is shown for three future periods.

Summer is projected to warm slightly more than other seasons, by 2.2 °C (1.5 °C to 3.0 °C) by the 2050s and 3.4 °C (2.0 °C to 5.6 °C) by the 2080s. Projected precipitation changes are relatively modest compared to historical variability, as shown in Figure 4. By the 2080s the median projection indicates an increase of about 10%, relative to the 1961-1990 baseline, in all seasons but summer when a roughly 10% decrease is projected.

Note that in Table 3 and Figure 4, the projections from two different emissions scenarios (A2 and B1) are combined to give a range of anticipated future change. In the early and middle of the 21st century, the emissions scenario has little influence on the amount of projected change. The ensemble projected annual warming is 2.7 °C (1.6 °C to 4.4°C) by the 2080s. The projections following the higher (A2) emissions scenario represent the warmer portion of the projected range of change (and vice versa for lower emissions, B1).

The summer mean temperature for the Thompson-Okanagan region during the 20th century was about 13 °C. The warmest 10% of summers were almost 2 °C warmer than this average, about 15 °C averaged across the entire region. Under the median summer warming of 3.4 °C, over two-thirds of summers in
the 2080s would be warmer than the 10 % warmest summers in the past even if no change in the distribution of temperature extremes occurs.

SUMMARY OF PROJECTED CHANGE

Table 3 is from Plan2Adapt.ca, a PCIC product that provides projections for the 21st century, as well as interactive maps and information on impacts. By the 2050s, there are substantial projected decreases in spring snowfall and a decrease in heating degree days. Along with these changes, an increase in frost-free days and growing degree days is indicated.

POTENTIAL IMPACTS

Changes to the overall climate of the region can result in a variety of associated impacts. This section makes use of Plan2Adapt’s impacts tab, which displays impacts that could be associated with the change projected for the region.

Warming will decrease snowpack. Increases to high-intensity precipitation and seasonal moisture variability could affect habitats. A seasonal increase in hot and dry conditions could decrease water supply, stress fish, increase wildfire risk and affect recreational use of reservoirs and lakes. Both river flooding frequency and runoff may increase; stream bank erosion and strain on flood protection infrastructure may increase. Stormwater design standards may no longer be adequate.

A change in agricultural productivity is possible due to a longer growing season and decreased water availability. New crops and varieties may become viable. Waterlogged soil could lead to decreased water quality due to agricultural runoff and steep slopes may be destabilized by additional water load. Warming and an accompanying reduction in snowpack could result in a shorter winter logging season. Animal and plant species are likely to migrate in response to warming. Key tourist industries, such as ski hills and back country recreation may also be affected.

There could be a transition to rainfall-dominant watersheds, causing an increased need for water conservation and storage.

1. CANGRID is a historical gridded data set with a spatial resolution of 50 km based on station observations, composed by Environment Canada (Zhang et al., 2000: Temperature and precipitation trends in Canada during the 20th century. *Atmosphere Ocean*, 38, 395-429.).

2. These values are from the PRISM data set, the details of which are given in: Daly, C., et al., 2008. Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. *International Journal of Climatology*, 28, 2031-2064.

3. The statistical uncertainty indicates the range of trend estimates that are plausibly consistent with the year-to-year variation in seasonal means. This range is calculated as a statistical "95 % confidence interval."

4. The projected change given is the median from an ensemble of 30 global climate model projections from the Coupled Model Intercomparison Project 3 (CMIP3). The range, in brackets, is the 10th to 90th percentile of projected changes. Details about the ensemble, known as PCIC30, are given in: Murdock, T. Q. and D. L. Spittlehouse, 2011: Selecting and Using Climate Change Scenarios for British Columbia. Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia.