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Introduction 
 
This report documents the production of statistically downscaled future climate projections by the 
Pacific Climate Impacts Consortium (PCIC) for Environment Canada under contract KM040-131148/A. 
Manuscripts are also in preparation for submission as journal publications that will describe our 
methods and results in further detail. Environment Canada will be invited to review all manuscripts 
related to this project before submission.  

The goal of the project was to produce a set of statistically downscaled future climate projections for 
North America based on the latest available Global Climate Model (GCM) and Regional Climate Model 
(RCM) simulations suitable for driving hydrologic models that could facilitate furthering Environment 
Canada’s study of changes in water availability. Attaining this goal involved carrying out five distinct 
tasks, described below and referred to throughout the report: 

1. In consultation with Environment Canada, select an appropriate observational daily dataset to 
serve as a downscaling target for North America.  

2. In consultation with Environment Canada, select a downscaling technique appropriate to the 
characteristics of the observational dataset. 

3. In consultation with Environment Canada, downscale projections from CORDEX-NA (CanRCM4) 
and the final member of the NARCCAP ensemble for daily precipitation and temperature at 10 
km resolution over North America. 

4. Extend downscaling of selected CMIP5 simulations to North America for daily precipitation and 
temperature at a 10 km resolution over North America. 

5. Use downscaled daily temperature and precipitation time series to produce projections of 
ETCCDI indices of extremes (Expert Team on Climate Change Detection and Indices, see Klein 
Tank et al. 2009) and conduct an extreme value analysis of 20-year return period temperature 
and precipitation events throughout North America. 

The report consists of four sections. First, the selection and construction of the observational dataset 
that was developed to train the selected downscaling method is described. In section 2, results are 
provided that document the rationale for selecting BCCAQ as the primary downscaling method. In 
section 3, the GCM and RCM simulations downscaled are listed and notes on data access and meta-data 
information are provided. Finally, Section 4 is an overview of selected results of projected changes in 
ETCCDI extremes indices and the magnitude of 20-year return values over North America. 

  



 

2 
 

1 Training dataset 
 
In consultation with Environment Canada, select an appropriate observational daily dataset to serve as a 
downscaling target for North America. 

Canada-wide downscaling has already been carried out (Murdock et al. 2013) using two downscaling 
methods (BCSD and BCCAQ) that were trained against the ANUSPLIN gridded daily dataset produced by 
Natural Resources Canada (McKenney et al. 2011).  

A comprehensive set of options for a North American statistical downscaling target was presented in the 
proposal. Upon confirmation with Environment Canada, we proceeded with ANUSPLIN daily for Canada 
and UW 1/16°  (Livneh et al. 2013) for the US. We first re-gridded UW to the 300 arc second ANUSPLIN 
resolution using the remap command in CDO (climate data operators1).  

Although the daily time series does not sync perfectly across the border, monthly average temperature 
records are quite consistent even without correction (not shown). However, considerable cross-border 
differences exist for precipitation. The US is wetter in the west during winter and prairies are drier year 
round while other seasons and locations are relatively similar (Figure 1 left column). Because of the 
dependence on location and time of year, we have not adjusted the climatology of the US training 
dataset in any way prior to downscaling. Rather, we carried out downscaling to the UW dataset re-
gridded to ANUSPLIN resolution as our target dataset.  

Another option for blending across the border includes correcting both Canada and the US daily values 
to WorldClim climatology. At this time, however, we recommend that harmonization of differences 
across the border be carried out on a project by project basis. The simplest adjustment is to bias correct 
the entire US domain to the monthly climatology of the ANUSPLIN monthly product. Though it reduces 
the magnitude of discrepancies, wetter western winters and drier prairies throughout the year remain 
(Figure 1 right column). Differences in the distribution of values across the border indicate that smooth 
stitching of precipitation may require a more complex method than bias correction. For example, Figure 
2 shows that, during winter, there are many more days with small precipitation amounts on the US than 
Canadian side of the border. Note that the ANUSPLIN monthly and monthly averaged ANUSPLIN daily 
datasets themselves differ so a perfect match should not be expected. Further improvement is obtained 
by adjusting the entire domain to the ANUSPLIN monthly climatology, which would be an option for 
continent wide studies based on our downscaled projections. 

  

                                                           
1 http://code.zmaw.de/projects/cdo  

http://code.zmaw.de/projects/cdo
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2 Select statistical downscaling method 
In consultation with Environment Canada, select a downscaling technique appropriate to the 
characteristics of the observational dataset. 

Before carrying out downscaling, it is essential to test different types of statistical downscaling methods 
for skill based on historical simulations, to ensure that the selected method is appropriate for use as 
intended. To do this, PCIC built upon statistical downscaling carried out over Canada (Murdock et al. 
2013). That work in turn built upon previous downscaling evaluation projects (Bürger et al. 2012, 2013).  

The methods assessed in this project for downscaling performance include: 

1. DELTA is simply the delta method whereby time series of interpolated GCM anomalies are 
applied to historical fine-scale climatologies to produce future time series. 

2. BCSD (Bias-Correction/Spatial Disaggregation; Werner 2011). We tested a modified version of 
BCSD that uses minimum and maximum temperature explicitly, because our previous 
assessment showed that not doing so led to a reduction in skill (Bürger et al. 2013). BCSD bias-
corrects monthly mean GCM/RCM precipitation and temperature via quantile mapping onto 
gridded observed data aggregated to the scale of the GCM/RCM. Daily results at high spatial 
resolution are obtained by temporal and spatial disaggregation using rescaled randomly 
sampled historical observations. As a result, historical day to day variability and sequencing of 
events is imposed on the downscaled future projections. 

3. BCCA  (Bias-Correction/Constructed Analogues; Maurer et al. 2010) is a hybrid method that 
combines the spatial aggregation and quantile mapping steps from BCSD with spatial 
information from a linear combination of historical analogues for daily large scale anomalies. 
The quantile mapping is performed on large-scale daily simulations directly instead of on 
monthly aggregates.  

4. QMAP (Quantile MAPping; Gudmundsson et al. 2012) produces spatially disaggregated results 
by applying quantile mapping to daily GCM/RCM outputs that have been interpolated to the 
high-resolution grid using the climate imprint method of Hunter and Meentemeyer (2005). For 
this reason it is sometimes referred to as BCCI. 

5. BCCAP (BCCA with Post-processing) applies a post-processing bias correction with quantile 
mapping to BCCA (Maurer et al. 2010).    

6. BCCAQ (BCCA with Quantile MAPping reordering) is a modified version of BCCA that uses QMAP 
in addition to the post-processing correction used in BCCAP (Cannon et al., in prep). Additional 
details are provided on BCCAQ in section 2.2. 

2.1 Performance  
 
In the previous studies conducted by PCIC, a series of skill tests was used to measure the performance of 
each downscaling method with respect to its ability to simulate indices of extremes. There are two 
important reasons for evaluating the performance of downscaling methods with respect to extremes. 
First, the downscaling methods are generally tuned to reproduce the climatological properties of 
temperature and precipitation but training is usually not specifically focussed on extremes, so these 
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indices provide a somewhat independent means of validation. Furthermore, in terms of providing 
information for adaptation planning or using downscaled fields to conduct further analysis of impacts, 
extremes are often more relevant than average quantities (Peterson 2005). Therefore, it is vital that the 
downscaling method that is selected be capable of demonstrating skill at simulating indices of extremes. 

For these reasons, our previous studies evaluated the ability of downscaling methods to reproduce each 
of the widely used 27 ETCCDI indices (Klein Tank et al. 2009) in three different ways. We continued this 
approach to evaluation of the downscaling methods and considered diagnostics for three aspects of 
skill: (1) sequencing of events, (2) distribution of values, and (3) spatial structure.  

To address sequencing diagnostic 1 is correlation; for distribution diagnostic 2 is the Kolmogorov-
Smirnov D-statistic. These correspond to tests 1 and 2 in Bürger et al. (2012). We measure spatial skill in 
diagnostic 3 by considering the ability of methods to reproduce observed spatial autocorrelation: for 
each day we compared Moran's I (Moran 1950) between observed and downscaled fields for spatial 
neighbourhoods of 3 to 15 grid points. This is an extension of diagnostic 3 from Murdock et al. (2013) in 
which specific sites in British Columbia were considered.  

We assessed each diagnostic in four ways:  

1. Training on the ERA40 reanalysis in part of the historical period (1958-1990) over the Canada-
wide domain and comparing to ANUSPLIN observations in a verification period (1991-2002). 

2. Same as 1 but for NCEP1 reanalysis (with training period of 1950-1990 and verification period of 
1991-2010). 

3. Training each method using an RCM historical simulation as the target then downscaling the 
driving GCM’s future projection to the RCM grid and comparing results to the future RCM 
projection. This was carried out for CGCM3/CRCM over the NARCCAP domain (2041-2070 SRES 
A2). This RCM emulation setup allows us to test the downscaling methods in a changed future 
climate where the relationship between the model and fine scales could differ. 

4. A modified version of 3 in which CanRCM4 is used in a "perfect model" approach. Here, outputs 
are aggregated to the GCM scale for downscaling back to the RCM scale, over the CORDEX-
NAM22 domain (2081-2100 RCP8.5). This setup also allows us to test in a changed future 
climate but is not influenced by any interactions between the dynamical and statistical 
downscaling steps.  

Diagnostic 1 is shown in Figure 3a. Correlation ranges from 0 (dark blue) to 1 (dark red) for each of the 
ETCCDI indices. Correlations are generally highest in the perfect model setup and lowest in RCM 
emulation. Skill is lowest in indices related to rainfall or consecutive days, and generally highest in 
variables related to temperature. BCSD has the lowest skill of all methods in this measure because it 
uses historical months to obtain the daily temporal resolution. Indeed, it was this weakness of BCSD that 
inspired the search for an improved method. QMAP, BCCAQ, and to a lesser extent BCCA and DELTA 
perform well on sequencing because daily events come directly from the driving data.  

However, BCSD maintains a realistic distribution as seen in Figure 3b, which displays results for 
diagnostic 2, where the Kolmogorov-Smirnov D statistic ranges from 1 for no skill (dark blue) to 0 for 
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perfect skill (dark red). For most variables QMAP, BCCAQ, and BCSD have the highest skill and BCCA the 
lowest, with BCCAP and DELTA in between. 

The poorest aspect of QMAP (and the DELTA method) performance is seen in diagnostic 3 (Moran’s 
index; Moran 1950) shown in Figure 4 for the perfect model setup. Values range from −1 for perfect 
dispersion through 0 for random spatial pattern to +1 for perfect correlation. Neighbourhood refers to 
the number of grid points in each horizontal direction used. Spatial autocorrelation decreases with 
number of grid boxes included in the neighbourhood, as expected. Spatial autocorrelations are quite 
close to true values for each of BCCAQ, BCCAP, and BCCA in particular, with BCSD trailing these methods 
slightly. QMAP and DELTA are much worse than all other methods in this measure because their sub-
grid scale differences between locations are essentially just interpolation. Results are similar for ERA40, 
NCEP, and RCM-emulation, though the separation between the high and low skill methods is most clear 
in the perfect model approach. 

In addition to visual inspection of Figures 3, 4 and plots like Figure 4 for other variables and 
corresponding to ERA40, NCEP1, and RCM-emulation, the diagnostics for each variable / method pair 
were tested against threshold criteria to obtain a pass or fail against each of the three diagnostics. The 
test criteria for diagnostics 1 and 2 are identical to Bürger et al. (2012). The spatial test used 
comparative quartile analysis (Mearns et al. 2012) which checks whether there is any overlap between 
boxplots (i.e. between the ranges spanned by the 25th and 75th percentiles) of Moran’s I for the 
downscaling method and the observed values.  

In Figure 5 the percentage of all possible tests passed is shown for each method (for diagnostics 1 and 2 
a method is considered to pass overall if it passes at over three-quarters of all grid points). The colours 
indicate the three types of tests and the lines denote the contributions from each of the four setups 
(starting from the bottom: ERA-40, NCEP1, RCM-emulation, and perfect model).  

The percentage of tests passed is lowest for DELTA, as expected, at 53%. BCSD, QMAP, BCCA, and BCCAP 
have similar results, at 68%, 68%, 64%, and 69%, respectively. BCCAQ outperforms all other methods, 
passing 81% of tests. 

Finally, all of these results are summarized in Table 1, where ranks are assigned according to the 
percentage of tests passed for each diagnostic. BCCAQ is first or tied for first in the sequencing and 
spatial diagnostics and second in distribution. Although QMAP beats BCCAQ slightly here and is tied for 
first in sequencing, it is only fifth on the spatial diagnostic. The average rank across all three tests for 
BCSD is fourth, better only than the DELTA method (the lowest average rank is 5 despite there being 6 
methods due to some ties). The Table also shows a qualitative assessment of results as good or poor, 
denoted by a green check or red x, respectively. In this regard, DELTA is also the weakest – the only 
method poor in two areas (distribution and spatial). BCSD, BCCA, and QMAP are each poor in one area 
(sequencing, distribution, and spatial, respectively). Only BCCAP and BCCAQ are good across all three 
measures, with BCCAQ consistently scoring higher than BCCAP in general. 
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Thus, BCCAQ delivers the sequencing and distribution skill of QMAP along with the spatial skill of BCSD, 
and compared to the other gridded methods examined, demonstrates superior skill. For this reason, it 
was chosen as the primary downscaling method.  

However, BCCAQ is a modification of a previously established method and as such should be subject to 
continued scrutiny. As it was also expressed during consultation with Environment Canada that further 
work on performance would be desired. Therefore, BCSD was run for a majority of the runs for which 
BCCAQ was run. In addition, both BCCA and QMAP are required inputs to BCCAQ so these are also 
available for detailed method comparisons as long as the disk space for retaining them is available. 
Therefore, while the main deliverable is BCCAQ downscaling, a considerable resource is available for 
conducting further analysis of statistical downscaling performance across North America. 

2.1 Additional details on BCCAQ  
 
Since BCCAQ was selected as the main downscaling method for proceeding, a more extensive 
description of the method than given in the previous section is provided here. BCCAQ is a hybrid 
downscaling algorithm that combines outputs from QMAP method, which we have shown performs well 
in terms of long-term temporal sequencing/distribution of extremes, but produces overly smoothed 
spatial fields on a day-by-day basis; and BCCA, which we have shown performs poorly in terms of the 
distribution of extremes, but produces daily fields with more realistic spatial structure.  

First, the BCCA and QMAP algorithms are run independently (Figure 6), and then BCCAQ combines BCCA 
and QMAP as a post-processing step. The daily QMAP outputs at each fine-scale grid point are reordered 
within a given month according to the daily BCCA ranks. Reordering is done month-by-month, as in the 
final scale/shift step of BCSD, to prevent the downscaled outputs from drifting too far from the QMAP 
long-term trend. Because the optimal weights used to combine the analogues in BCCA are derived on a 
day-by-day basis, without reference to the full historical dataset, the algorithm is prone to "Huth's 
paradox", wherein models that are calibrated based on short-term variability fail to project realistic 
long-term trends (Huth 2004; Benestad et al. 2008). Reordering data for each fine-scale grid point within 
a month effectively breaks the overly smooth representation of sub GCM-grid scale spatial variability 
inherited from QMAP (Maraun 2013) thereby resulting in a more accurate representation of event-scale 
spatial gradients. Over longer time-scales, the spatial variability of BCCAQ converges to that of QMAP. 
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3 GCM and RCM runs downscaled 
In consultation with Environment Canada, downscale projections from CORDEX-NA (CanRCM4) 
and the final member of the NARCCAP ensemble for daily precipitation and temperature at 10 
km resolution over North America. 

Extend downscaling of selected CMIP5 simulations to North America for daily precipitation and 
temperature at a 10 km resolution over North America. 

Downscaled projections of daily minimum and maximum temperature, daily precipitation from Global 
Climate Model (GCM) and Regional Climate Model (RCM) simulations at daily time resolution and 300 
arc-second (~10 km) spatial resolution have been produced over North America. In collaboration with 
Environment Canada, a subset of the 88 potential historical and future time periods described in the 
proposal were selected that could be completed in the time frame. Table 2 lists the downscaled runs 
completed for BCCAQ. The downscaled runs include (for RCP8.5) all of priorities 1 through 3, and none 
of priority 4 as outlined in Tables 2 through 5 of the proposal.  

In addition to daily temperature and precipitation time series, annual ETCCDI indices of extremes 
(Sillmann et al. 2013a; Sillmann et al. 2013b) were computed for each run at the same spatial resolution 
using the climdex.pcic R-package2. Finally, 20 year return intervals were estimated by fitting the annual 
maxima of downscaled values to the Generalized Extreme Value (GEV) distribution for three standard 
future periods (2011-2040, 2041-2070, 2071-2100) using the ismev package for the R software 
programming language which uses the method of L-moments (Hosking et al. 1985). Uncertainty was 
assessed based on the standard errors and confidence intervals of estimates of the three GEV 
parameters. These are approaches that are frequently used in climate research, e.g. (Kharin et al. 2007; 
Kharin et al. 2013), and with which PCIC has substantial expertise. 

For CMIP5 runs (Taylor et al. 2012) priority was given to the highest emissions scenario RCP 8.5 (Moss et 
al. 2010) as it was determined in conjunction with Environment Canada that more RCPs provide the 
least additional information compared to ensuring as large an ensemble size as possible for a given RCP. 
The NCARCCAP MM5I RCM simulation driven by the HadCM3 global climate model was the only 
NARCCAP simulation that had not yet been downscaled for Canada (Murdock et al. 2013a) and is now 
complete for all of North America. The first run from CORDEX-NA (CanRCM4 0.22°) has also been 
downscaled for all of North America.  

As BCCAQ was chosen as the primary downscaling method, and its computation requires BCCA and 
QMAP, the available suite of downscaled products over Canada has now been expanded to include all 
six methods listed in section 2, providing a greater ability to assess the impact of the choice of 
downscaling method on fine-scale climate change projections. 

3.1 Data file information 
 
All of the data produced are stored as NetCDF4/HDF5 files on PCIC’s RAID 6 arrays and are backed up to 

                                                           
2 http://cran.r-project.org/web/packages/climdex.pcic/index.html 

http://cran.r-project.org/web/packages/climdex.pcic/index.html
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a tape archive. Access is available at https://www.pacificclimate.org/data/statistically-downscaled-
climate-scenarios for GCMs over Canada only. Downloading of results from this location may be 
automated using a DAP request as described at 
http://tools.pacificclimate.org/dataportal/docs/user.html#power-user-howto or by using wget. The full 
set of results is also available from http://pacificclimate.org/~tmurdock/ecdownscaling/ which includes 
three sub-directories: CMIP5, NARCCAP, and CONUS and may be browsed by http as well as accessed by 
wget.  

Historical and future simulations for each model/downscaling method combination have been grouped 
together into a single netcdf file. Units are mm/day for precipitation and degrees Celsius for 
temperature. Time resolution is daily. Note that start and end dates given by the file name do not 
indicate that simulations are continuous (NARCCAP time series jump from 2000 to 2041, for example).  

3.1.1 Meta-data  
 
The global netcdf file attributes provide detailed information about the driving models and experimental 
setup. These can be viewed using: ncdump -h <filename>. These meta-data are mostly carried through 
from the downscaled GCM or RCM run. There is no standard convention for statistical downscaling 
meta-data and to preserve information about methods and driving models/runs but PCIC has developed 
a coherent standard for use with files on our data portal and these files all follow that standard.  

3.1.2 Naming conventions  
 
All files follow a standard naming convention: 
variable_time.resolution_downscaling.method+target.dataset+GCM+RCM_run+forcing_start-end.nc 

Each item in the naming convention is defined as follows: 

variable = tasmin, tasmax, or pr for minimum temperature, maximum temperature and 
precipitation respectively 

time.resolution = day for daily time resolution 

downscaling.method = e.g., BCCAQ or BCSD 

target.dataset = ANUSPLIN300 (ANUSPLIN 300 arc-second dataset) 

GCM = GCM or driving GCM (in the case of downscaling from an RCM run), e.g. CCSM 

RCM (optional) = RCM, e.g. CRCM 

run = GCM or RCM run name or number (e.g.,  historical, 1, 2, etc.) 

forcing = greenhouse gas forcing (e.g. sresa2, rcp45, etc.) 

start / end = date of first / last element in time series in YYYYMMDD format (e.g., 19710101)  

https://www.pacificclimate.org/data/statistically-downscaled-climate-scenarios
https://www.pacificclimate.org/data/statistically-downscaled-climate-scenarios
http://tools.pacificclimate.org/dataportal/docs/user.html#power-user-howto
http://pacificclimate.org/%7Etmurdock/ecdownscaling/
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4 Analysis of selected results 
Use downscaled daily temperature and precipitation time series to produce projections of ETCCDI 
indices of extremes (Expert Team on Climate Change Detection and Indices, see Klein Tank et al. 
2009) and conduct an extreme value analysis of 20-year return period temperature and 
precipitation events throughout North America. 

We provide below an overview of projected changes in R95p, RX1day, TX90p, and TN10p indices, the 
annual minima and maxima of daily minimum and maximum temperature, respectively, (i.e. TNn and 
TXx), and of annual maximum daily precipitation accumulations (RX1day). In addition we consider the 
20-year return values of precipitation, cold events for daily minimum temperature and hot events for 
daily maximum temperature. 

The focus of the analysis for annual temperature and precipitation is on the ensemble median of the 12 
RCP 8.5 runs (Figures 7 to 12). In addition to the ensemble median, results from downscaling CanESM2 
are also presented. This helps give a sense of the amount of smoothing that occurs in the ensemble 
average by visualizing a single run.  

We present extremes results for CanESM2 only (Figures 13 to 21). A sense of how the CanESM2 results 
for the ETCCDI indices may differ from the ensemble median may then be obtained by referring to the 
differences between the ensemble median and CanESM2 for annual temperature and precipitation 
(Figures 7 to 12). Note that the CanESM2 results do not exist in a small part of the far north but the 
ensemble median results do – in those few locations that are not included in the domain of all 12 
models, the median is computed from those models with results only. 

Annual precipitation is projected to increase Canada-wide (Figure 7), with a south to north gradient of 
larger increases, and with larger relative increases at the coasts. In addition, we see some very large 
increases of over 50% in the far North. This is due in part to low historical precipitation in the area but 
should also be treated with caution due to the sparse station network in the region upon which that 
historical climatology is based.  The overall latitudinal gradient in projected precipitation change also 
generally exists in the United States (Figure 8), with the exception of increases throughout most of the 
west. Precipitation increases are generally small near the Canada-US border.  

Comparing CanESM2 to the CMIP5 ensemble median, we see quite similar results overall except that 
CanESM2 projects larger precipitation increases over much of the prairies, north-central British 
Columbia, and all of the Western US. The projected precipitation decrease in the Southeastern US is also 
more intense in the CanESM2 run, however. 

Night-time low temperatures show warming across Canada (Figure 9), with a gradient from about 2°C to 
3°C warming in the south to well over 5°C in much of the north. This south to north gradient is also 
present in the central US (Figure 10), but with less warming on the west and southeast coasts. Day-time 
high temperatures (Figures 11 and 12) follow similar patterns, with slightly less warming projected than 
for night-time low temperatures in most locations (compare with Figures 9 and 10). 
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The individual CanESM2 run generally projects more warming in both night-time low and day-time high 
temperatures than the ensemble median, particularly in the far north, parts of BC and most of the 
western and northern US (Figures 9 to 12). 

Moving to the indices of extremes, annual precipitation during very wet days, R95p (Figure 13), is 
projected to increase over most of the continent. The only decreases projected lie in a swath in the 
centre of the continent from Texas to south-eastern Manitoba/south-western Ontario. The largest 
increases are projected for the west coast, far North, and the eastern edge of the Maritimes including 
many areas with considerable increases of over 80%. At a small number of locations, increases of close 
to 400% are projected. Preliminary investigation into the cause of the very large projected increases 
appears to indicate that inflation is occurring, a phenomenon that quantile mapping methods are prone 
to (Maraun 2013). This may warrant investigation of further modifications to BCCAQ to avoid inflation. 
Note that if such modifications were made, BCCA would not need to be re-computed, only QMAP and 
the combination of the two methods into BCCAQ, meaning that computing a modified version of BCCAQ 
would be less onerous than computing it the first time. 

The annual maximum one-day precipitation (RX1day – roughly comparable to the 1-year return period; 
Figure 14) is also projected to decrease in a few locations in the mid-continental swath where R95p is 
projected to decrease, but in this case there are also some locations further to the west with decreases, 
which do tend to coincide with locations with the smallest R95p increases (compare with Figure 13). The 
largest increases in RX1day are also along all three coasts. While some locations display increases of 
over 80%, generally the percentage increases in RX1day are less than those in R95p, as may be 
expected. 

Note that the largest increases in R95p and RX1day in the US west are also located where CanESM2 
precipitation projections are larger than the ensemble median (Figure 7 and 8), so these increases may 
be exaggerated in this single run compared to the ensemble as a whole. 

For temperature extremes, we first consider the change in the annual minima TNn (Figure 15) and 
annual maxima TXx (Figure 16) – roughly akin to 1-year return period events. The largest warming in 
TNn is >15°C at the southern tip of Baffin island, with increases between 10°C to 15°C in northern 
Quebec, parts of southern BC, the US Pacific Northwest, and Yukon/Northwest Territories. Increases in 
TXx are considerably smaller than for TNn at most locations, though much of BC and parts of Quebec 
show increases of over 6°C. No increases smaller than 1°C are indicated for either index in the US, and 
none smaller than 3°C for TNn in Canada though TXx does have some locations in the far north with 
warming close to zero projected. 

The other indices of temperature extremes that we considered are the change in percentage of cold 
days TN10p (Figure 17) and warm days TX90p (Figure 18). These figures indicate that cold days are 
projected to occur during 5% to 10% fewer days (darker blue indicates larger decrease in number of 
days thus larger warming) than in the past (by definition 10% in the past). In other words, the previous 
TN10p events are projected to occur between half as often to not at all. The near disappearance of cold 
days is primarily in the western US and most of Canada with the exception of some parts of the 
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Maritimes, southern Ontario, Hudson Bay region, and Northwest Territories. Even in most of these 
locations however, a reduction by at least 5% of days (half of past occurrence) is projected. Increases in 
warm days are projected over the entire domain, with the largest increases (60% to 70%) in Florida and 
Haida Gwaii. What was the 10% warmest days in past are projected to occur around 1/2 of the time in 
future (increases of about 40%) over most of the US, northern Canada, and parts of BC and the 
Maritimes, and around 1/3 of the time (increases of about 20% to 25%) in the remainder of the 
continent. 

Moving to the return periods, for 20-year return period one-day precipitation events (Figure 19), the 
spatial pattern is less coherent than for annual precipitation (Figures 7 and 8) and R95p (Figure 13), with 
a pattern quite similar to that for RX1day (Figure 14) but with more variability (note the different 
legends between Figures 14 and 19). Indeed, the patchy nature of the projected change suggests 
caution in interpreting these results. The largest changes here are also most likely affected by inflation 
and correction of inflation may result in a less patchy future projection. 

For temperature events we consider the 20-year return period for minima of night-time low 
temperatures (Tmin-RP20; Figure 20) and maxima of day-time high temperatures (Tmax-RP20; Figure 
21). At most locations, the 20-year return periods warm by considerably more than the corresponding 
annual average warming in Tmin (Figures 9 and 10) and Tmax (Figures 11 and 12). Warming in Tmin-
RP20 and Tmax-20 tends to also exceed that of the annual minimum TNn (Figure 15) and annual 
maximum (TXx), and follow a somewhat similar spatial pattern, but with larger variability. Tmin-RP20 
warming is largest throughout the Canadian and US rockies, prairies, northern New England, Maritimes, 
Quebec, and southern Baffin Island while Tmax-RP20 warming is considerably less than for Tmin-RP20 in 
the US, Rockies, and prairies but larger in northwest BC and southern Yukon. 

In summary, the downscaled projections indicate increased precipitation across almost all of North 
America, with larger relative increases at many locations when considering more extreme indices, 
though also with increasing spatial variability. Some locations display alarmingly large relative increases, 
suggesting a potential need for a modification to BCCAQ to avoid inflation. Warming is projected in all 
aspects of temperature, again with generally larger increases (and spatial variability) for more extreme 
indices. The CanESM2 run used to display the indices of extremes and return periods (Figures 13 to 21) is 
generally similar to the ensemble median projected change except with slightly more warming and 
precipitation increase in many locations, particularly the US west (Figures 7 to 12).  
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5 Tables 
 

Table 1: Performance of methods with rank based on number of tests passed as well as qualitative assessment 
based on visual inspection (e.g. Figures 1 and 2) as strong (green check) or weak (red X) for each diagnostic: 
sequencing (correlation), distribution (K-S test D statistics), and spatial (Moran’s I). Final column shows 
average rank and overall qualitative assessment across all three measures. 

Method Sequencing Distribution Spatial Average 
DELTA 4    5 X 6 X 5 X 
BCSD 6 X     3  4  4 OK 

BCCA 3    6 X 1  3 OK 

QMAP  1    1  5 X 2 OK 

BCCAP 4    4    1    3  
BCCAQ 1    2  1  1  
 
Table 2: Runs downscaled with BCCAQ for North America 

Project, model, run Forcing (for GCM and RCM simulations) 
and/or source of driving data (RCMs) 

Time slice 

CMIP5 RCP 8.5 (x12)* 
 

20c3m 1951-2005 
RCP 8.5 (x12) 2006-2100 

CORDEX-NA CanRCM4  
(0.22° resolution)  

20c3m 1951-2005 
RCP 8.5 + CanESM RCP 8.5 2006-2100 

NARCCAP: MM5i NCEP 1980-2000 
20c3m 1971-2000 
A2 + HadCM3 A2 2041-2070 

* CNRM-CM5-r1, CanESM2-r1, CSIRO-Mk3-6-0-r1, CCSM4-r2, MIROC5-r3, MPI-ESM-LR-r3, MRI-CGCM3-r1, GFDL-
ESM2G-r1, HadGEM2-ES-r1, ACCESS1-0-r1, inmcm4-r1, and HadGEM2-CC-r1 
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6a Figures – training dataset and downscaling method  
 
The figures in this section describe results of to sections 1 and 2 of the text regarding training dataset 
and statistical downscaling method selection, respectively. 

 

Figure 1: Monthly average precipitation climatologies for March (top row), June (second row), September 
(third row) and December (bottom row) for raw stitched driving data (left) and bias corrected stitched 
(right). 
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Figure 2: Distribution of daily precipitation for strip along Canada-United States border (two grid boxes 
wide on each side) for winter (left) and summer (right) in bias-corrected stitched dataset. 
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Figure 3a: Diagnostic 1 (sequencing): correlation r statistic for CLIMDEX indices for ERA40 (top left), 
NCEP1 (top right), RCM-emulation (bottom left), and perfect model (bottom right).  
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Figure 3b: Diagnostic 2 (distribution): K-S D statistic for CLIMDEX indices for ERA40 (top left), NCEP1 
(top right), RCM-emulation (bottom left), and perfect model (bottom right). 
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Figure 4: Diagnostic 3: spatial autocorrelation (Moran index) for ERA40 with BCSD, BCCA, BCCAP, 
BCCAQ, QMAP, and DELTA for “perfect model” setup. 
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Figure 5: Summary of diagnostics 1-3 for DELTA, BCSD, BCCA, QMAP, BCCAP, and BCCAQ. See text for 
descriptions of the colours and lines denoted in the bars.  

 

 

Figure 6: Schematic BCCAQ methodology 
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6b Figures – change in annual means 
 
The figures in this section show projected change in annual means based on the 12 downscaled CMIP5 
RCP 8.5 runs, as described in sections 3 and 4. 
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Figure 7: 2050s percent change in annual precipitation for ensemble median (top) and CanESM2 (bottom) 
for RCP8.5 over Canada. Ensemble median is computed at each grid point independently. 
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Figure 8: 2050s percent change in annual precipitation for ensemble median (top) and CanESM2 (bottom) 
for RCP8.5 over the United States. Ensemble median is computed at each grid point independently. 
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Figure 9: 2050s change in annual average tmin for ensemble median (top) and CanESM2 (bottom) for 
RCP8.5 over Canada. Ensemble median is computed at each grid point independently. 
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Figure 10: 2050s change in annual average tmin for ensemble median (top) and CanESM2 (bottom) for 
RCP8.5 over the United States. Ensemble median is computed at each grid point independently. 
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Figure 11: 2050s change in annual average tmax for ensemble median (top) and CanESM2 (bottom) for 
RCP8.5 over Canada. Ensemble median is computed at each grid point independently. 
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Figure 12: 2050s change in annual average tmax for ensemble median (top) and CanESM2 (bottom) for 
RCP8.5 over the United States. Ensemble median is computed at each grid point independently. 
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6c Figures – change in extremes 
 
The figures in this section show projected change in indices of extremes and return periods based on the 
12 downscaled CMIP5 RCP 8.5 runs, as described in section 4. 

 



 

27 
 

 

Figure 13: 2050s change in R95p for CanESM2 RCP8.5 over Canada (top) and United States (bottom).  
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Figure 14: 2050s change in annual max of RX1day for CanESM2 RCP8.5 over Canada (top) and United 
States (bottom). 
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Figure 15: 2050s change in TNn (annual minima of tmin) for CanESM2 RCP8.5 over Canada (top) and 
United States (bottom). 
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Figure 16: 2050s change in TXx (annual maxima of Tmax) for CanESM2 RCP8.5 over Canada (top) and 
United States (bottom). 
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Figure 17: 2050s change in percentage of cold days TN10p for CanESM2 RCP8.5 over Canada (top) and 
United States (bottom). 
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Figure 18: 2050s change in the percentage of warm days TX90p for CanESM2 RCP8.5 over Canada (top) and 
United States (bottom). 

  



 

33 
 

 

Figure 19: 2050s change in P-RP20, the daily precipitation 20-year return period event. 
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Figure 20: 2050s change in Tmin-RP20, the daily night-time low temperature 20-year return period cold 
event.  
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Figure 21: 2050s change in Tmax-RP20, the daily day-time high temperature 20-year return period hot event. 
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