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1 Introduction 
 
This report documents the production of statistically downscaled future climate projections by the 
Pacific Climate Impacts Consortium (PCIC) for Environment Canada under contract number KM170-12-
1236. A manuscript is also in preparation for submission as a journal publication that will describe our 
methods in detail. Section 2 describes the selection of a subset of GCM scenarios for the CMIP5 
ensemble based on an objective set of selection criteria. The criteria included hemispheric skill 
assessment based on the CLIMDEX indices (Sillmann et al. 2013) historical criteria used previously at 
PCIC (Werner 2011), and refinement based on a modified clustering algorithm (Houle et al. 2012; 
Katsavounidis et al. 1994). In section 3, results are summarized from an intercomparison of three 
downscaling techniques based on methods used in a previous intercomparison conducted by PCIC 
(Bürger et al. 2012a). Finally, the deliverables produced (downscaled GCM and RCM projections for 
Canada using two methods) are described and information about accessing them is given in section 4. 
Tables and figures are provided in sections 5 and 6, respectively. 

2 GCM selection 

2.1. Screening 
 
We ranked GCMs according to mean ARMSE over Northern Hemisphere land in simulating all CLIMDEX 
indices during 1981-2000 for four reanalyses based on the results of Sillmann et al. (2013). Of the 31 
models available at the time that ranking was performed, 26 had future projections for both RCP 4.5 and 
8.5 (Table 1). Although there is uncertainty in the reanalyses, rankings changed very little if only the two 
reanalyses in which we have the most confidence (NCEP2 and ERA-interim) were used. The set of 7 least 
skillful models was identical, for example.  

Because there are many ways to measure past model performance (Gleckler et al. 2008) and historical 
skill does not necessarily imply future skill (Tebaldi and Knutti 2007), we screened out models below a 
cut-off level rather than forming an ensemble from the 12 models with highest skill. To choose a cut-off 
below which to screen models out of our selection process, we turned to historical precedent to 
maintain consistency with methods used to choose the ensemble of CMIP3 runs that have been used 
extensively at PCIC. Seven criteria were considered by Werner (2011) for CMIP3 with only three models 
meeting all criteria: CGCM3.1(T47), GFDL-CM2.1, and UKMO-HadCM3. Each of these have been widely 
used for climate scenarios, impacts and adaptation studies in Canada and tended to score at or above 
the middle on most skill measures (Werner 2011; Gleckler et al. 2008). To keep the CMIP5 versions of 
each of those models (CanESM2, GFDL-CM3 and HadCM3) we retained the top 19 models based on our 
measure of historical skill in simulating extremes, and drop the 7 models with skill below this cut-off.  

To understand the implications of removing the bottom 7 models, we compared their future projected 
changes to those from all possible ensembles with 7 members (Figure 1). For each model, RCP4.5 
projected changes for the 2050s and 2080s were calculated for all CLIMDEX indices. The standardized 
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distance of the projected changes for each model from the centroid of all models was then calculated. 
The model with projected changes most similar to that of the centroid was assigned a rank of 1 and so 
on. The lowest mean rank possible for a 7 member ensemble (i.e., the 7 that are farthest from the 
centroid on average) is 23. The screened-out ensemble of 7 models (dashed red line) is quite different 
from its peers, with a mean projected rank of 19. Less than 1% of ensembles were greater outliers than 
this. This suggests that screening out the bottom 7 models has resulted in a narrowing in the range of 
change that will be projected according to runs selected from the remainder. 

2.2 Ensemble selection 
 
To select a subset of runs from the 19 remaining models, we used a technique adapted from Houle et al. 
(2012). We replaced k-means clustering with the KKZ algorithm (Katsavounidis et al. 1994) since the 
former tends to result in a narrow ensemble by favouring groupings of results and we wanted to better 
represent the range of climate sensitivities represented by the remaining ensemble. The KKZ algorithm 
recursively selects members that best span the centre and edges rather than breaking the ensemble into 
clusters. This allowed us to better represent the range of variation across the ensemble while still 
favouring clusters of results, and produced an ordered sequence of solutions.  

To ensure that the selected ensemble is representative of a range of change in extremes, we considered 
not only projected seasonal mean temperature (minimum and maximum) and precipitation but 
extremes as well. Although we assigned equal weight to each variable, similar results are obtained by 
weighting 27 CLIMDEX indices for each variable by a factor of 1/27 and each season of minimum 
temperature, maximum temperature, and precipitation by 1/4. 

2.2.1 Selected ensemble 
 
Table 2 shows the ordered ensemble obtained in this way based on RCP 4.5 projections for both the 
2050s and 2080s for each of the 5 Giorgi regions (Figure 2) that overlap Canada. The twelve selected 
members explain nearly 90% of variation in 90% of the indices and seasonal means for all variables 
combined over all regions considered. However, users selecting a smaller subset of the full ensemble 
will want to choose one that represents as wide a range as possible over their sub-region. To 
accommodate smaller subsets that are more regionally relevant, we ran the method separately for each 
region using only the 12 runs in Table 2. This produces unique ordering for each of the 5 regions (Table 
3) but maintains the consistency of the full ensemble across the country. 

Scatterplots of winter and summer temperature (Figure 3) for two of the Giorgi regions using the 
regional ordering in Table 3 indicate that the ensemble of 12 members (shown by the blue numbers) 
spans a fairly wide range of winter and summer temperature and precipitation projections. Runs from 
the 26 models considered for selection but not among the 12 selected members are shown as blue dots. 
Runs from the 7 models that were screened out based on historical skill are shown as red dots. 
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3 Downscaling evaluation 

3.1 Statistical downscaling methods 
 
The three methods considered for downscaling include Bias-Correction/Spatial Disaggregation (BCSD; 
Werner 2011), Bias-Correction/Constructed Analogues (BCCA; Maurer et al. 2010), and Bias-
Correction/Climate Imprint method (BCCI; Hunter and Meentemeyer 2005). We downscaled each to a 
target resolution of 300 arc seconds (roughly 10 km x 10 km) using the ANUSPLIN historical dataset 
(McKenney et al. 2011). 

First we modified BCSD to use minimum and maximum temperature explicitly, because our previous 
assessment showed that not doing so led to a reduction in skill (Bürger et al. 2012a). BCSD bias-corrects 
monthly mean GCM/RCM precipitation and temperature via quantile mapping onto gridded observed 
data aggregated to the scale of the GCM/RCM. Daily results at high spatial resolution are obtained by 
temporal and spatial disaggregation using rescaled randomly sampled historical observations. As a 
result, historical day to day variability and sequencing of events is imposed on the downscaled future 
projections.  

BCCA is a hybrid method that combines the spatial aggregation and quantile mapping steps from BCSD 
with spatial information from a linear combination of historical analogues for daily large scale anomalies 
(Maurer et al. 2010). The quantile mapping is performed on large-scale daily simulations directly instead 
of on monthly aggregates.  

BCCI produces spatially disaggregated results by applying quantile mapping to daily GCM/RCM outputs 
that have been interpolated to the high-resolution grid using the climate imprint method of Hunter and 
Meentemeyer (2005; Maurer and Hidalgo 2008).  

3.2 Performance  
 
We relied on three diagnostics for our evaluation of the downscaling methods. Each diagnostic is 
labelled by the aspect of downscaled results we aim to assess: (1) sequencing of events, (2) distribution 
of values, and (3) spatial structure. The first two diagnostics correspond to “test 1 and test 2” used in 
our previous downscaling intercomparison (Bürger et al., 2012a). Diagnostic 1 (sequencing) is based on 
correlation (e.g., Figure 4) while diagnostic 2 (distribution) is based on the Kolmogorov-Smirnov D-
statistic (e.g., Figure 5). We assessed both of these diagnostics in two ways. The first was by training on 
four different reanalyses over British Columbia and comparing to observations in a verification period 
(1991-2005). The second way was by training each method using an RCM historical simulation as the 
target then downscaling the driving GCM’s future projection to the RCM grid and comparing to the 
future RCM projection. This RCM emulation setup allows us to test the downscaling methods in a 
changed future climate where the relationship between the model and fine scales could differ.  

Diagnostic 3 (spatial) measures the ability of methods to retain spatial covariance: for the 20 stations 
used in Bürger et al. (2012b) and the three directly downscaled variables daily precipitation, minimum 
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and maximum temperature, we considered correlations between all station-variable combinations 
observed and compared to downscaled results (e.g., Figure 6) for the verification period (1991-2010).   

The main findings of our comparison include: 

• Neither BCCA nor BCSD strictly surpass BCCI in skill for most measures.  
• For sequencing, BCCI considerably outperformed BCSD and slightly outperformed BCCA. 
• BCCA had the worst performance on distribution.  
• BCSD was generally superior to the other two methods for distribution except tor temperature 

percentiles and extreme minima/maxima where it fared worse than BCCI.  
• BCCA’s poor performance for distribution is more prominent for precipitation than temperature 

variables. 
• RCM emulation indicates that results over BC are generally consistent with Canada-wide results 

except for the CSDI and SU indices. 
• RCM emulation results generally do not depend on the GCM-RCM combination used, with the 

exception of precipitation skill in western Ontario/eastern Manitoba. 
• BCSD has superior spatial performance. 

In Table 4, we summarize these findings in two ways. In the first column, we assign a numerical rank 
based on quantitative skill. The rank is consistent across almost all variables except for diagnostic 2 
(distribution) where BCSD was best for many variables but BCCI best for temperature percentiles and 
extreme minima/maxima. In the second column we provide a qualitative assessment based on expert 
judgment of the overall performance of the method as strong, medium or weak. 

From these results we conclude that BCCA should not be considered for further use at this time. The 
method shows promise in the sense of an improvement over BCSD on sequencing and BCCI spatially, but 
at the cost of distribution skill. The overall rank of BCCI and BCSD is identical, but the two methods have 
complementary strengths and weaknesses. BCCI shines on sequencing because daily events come 
directly from the climate model being downscaled. BCSD cannot do very well in this regard because it 
uses historical months to obtain the daily temporal resolution. However, BCSD maintains good spatial 
correlation between stations and variables whereas BCCI is very poor at this measure because its sub-
grid scale differences between locations are essentially just interpolation. RCM emulation results show 
higher distribution skill for BCSD than BCCI for all indices except temperature percentiles and extreme 
minima/maxima where the opposite is true. Due to the trade-offs between different aspects of 
performance between the two methods, we concluded that it would be preferred to downscale both.  

4 Deliverables 
 
Downscaled climate scenarios were produced for Canada between longitudes from 50°W to 143°W and 
latitudes from 40°N to 84°N for all past and future time slices at daily time resolution and 300 arc second 
(~10 km) spatial resolution. Runs downscaled are shown in Table 5 and include the NARCCAP ensemble 
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(NCEP-driven for the period 1980-2000 as well as GCM-driven for 1971-2000 and 2041-2070) as well as 
CMIP5 (historical runs for 1950-2005 and from RCP 2.6, 4.5, and 8.5 projections for 2006-2100).  

The original plan was to choose from one of three different downscaling methods (BCCI, BCCA, and 
BCSD – described briefly in section 3.1). The results of the comparison, however, indicated such 
different strengths and weaknesses between BCCI and BCSD that the size of the final ensemble was 
doubled and the final ensemble includes both. Guidelines to users regarding use of these scenarios will 
need to include information on when to use BCCI only, BCSD only, or both. 

All CMIP5 runs listed in Tables 2 and 3 have been downscaled using BCCI and BCSD. As the GCM 
downscaling was completed ahead of schedule, BCCA downscaling was also carried out, although based 
on section 3 we do not consider these results part of our final ensemble. We have downscaled the 10 
NARCCAP runs for which output is available (Table 6). All are complete for both BCCI and BCSD. Due to 
the longer time to process the RCMs than GCMs, some post-processing steps remain for both BCCI and 
BCSD runs from RCMs that may not be complete until shortly after March 31, 2013. We did not 
downscale BCCA for the RCMs as we had completed our performance assessment which ruled it out 
before these runs would have begun. Results may be accessed as described in the next section. 

4.1 Data file information 
 
All of the data produced are stored as netcdf files on one of PCIC’s servers which is backed up using a 
RAID system as well as tape archive. Access is available at 
http://pacificclimate.org/~tmurdock/ecdownscaling/ which includes two sub-directories: CMIP5 and 
NARCCAP. A directory tree and additional information on using the files is included in a ReadMe text file 
in each of the sub-directories. 

Historical and future simulations for each model/downscaling method combination have been grouped 
together into a single netcdf file. Units are mm/day for precipitation and degrees Celsius for 
temperature. Time resolution is daily. Each grid point normally contains 55115 data points for CMIP5 
and 21900 data points for NARCCAP files. Note that start and end dates given by the file name do not 
indicate that simulations are continuous (NARCCAP time series jump from 2000 to 2041, for example). 
Note also that the end dates of different GCM-RCM pairs are not identical. 

4.1.1 Meta-data  
 
The global netcdf file attributes provide detailed information about the driving models and experimental 
setup. These can be viewed using: ncdump -h <filename>. These meta-data are mostly carried through 
from the downscaled GCM or RCM run. There is no standard convention for statistical downscaling 
meta-data and to preserve information about methods and driving models/runs. PCIC hopes to develop 
a coherent standard for downscaled products and will revise the metadata of the current files when that 
is complete.  

http://pacificclimate.org/~tmurdock/ecdownscaling/
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4.1.2 Naming conventions  
 
All files follow a standard naming convention: 
variable_time.resolution_downscaling.method+target.dataset+GCM+RCM_run+forcing_start-end.nc 

Each item in the naming convention is defined as follows: 

variable = tasmin, tasmax, or pr for minimum temperature, maximum temperature and 
precipitation respectively 

time.resolution = day for daily time resolution 

downscaling.method = BCCI or BCSD 

target.dataset = ANUSPLIN300 (ANUSPLIN 300 arc-second dataset) 

GCM = GCM or driving GCM (in the case of downscaling from an RCM run), e.g. CCSM 

RCM (optional) = RCM, e.g. CRCM 

run = GCM or RCM run name or number (e.g.,  historical, 1, 2, etc.) 

forcing = greenhouse gas forcing (e.g. sresa2, rcp45, etc.) 

start / end = date of first / last element in time series in YYYYMMDD format (e.g., 19710101) 
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5 Tables 
 

Table 1: Rank based on mean ARMSE of all CLIMDEX indices during 1981-2000 compared to four 
reanalyses as in Sillmann et al. (2013). Rank is shown both for models with RCPs 4.5 and 8.5 future runs. The 
cutoff above which models were retained is indicated by the bold line (the top 19 models). 

Rank Model 
1 MPI-ESM-LR 
2 CSIRO-Mk3-6-0 
3 MRI-CGCM3 
4 EC-EARTH 
5 MPI-ESM-MR 
6 HadGEM2-ES 
7 CESM1-BGC 
8 CCSM4 
9 GFDL-ESM2G 
10 CNRM-CM5 
11 CMCC-CM 
12 GFDL-ESM2M 
13 HadGEM2-CC 
14 ACCESS1-0 
15 NorESM1-M 
16 PSL-CM5A-MR 
17 MIROC5 
18 NMCM4 
19 CanESM2 
20 PSL-CM5A-LR       
21 MIROC-ESM-C 
22 BNU-ESM 
23 BCC-CSM1-1 
24 FGOALS-s2 
25 MIROC-ESM 
26 PSL-CM5B-LR 
 
Table 2: Runs selected for the CMIP5 ensemble. All selected models have historical, RCP4.5, and RCP8.5 
runs. Models with runs for RCP2.6 are denoted with an X. 

Order Model Run RCP2.6 
1 MPI-ESM-LR 3 X 
2 inmcm4 1  
3 HadGEM2-ES 1 X 
4 CanESM2 1 X 
5 MIROC5 1 X 
6 CSIRO-Mk3-6-0 1 X 
7 MRI-CGCM3 1 X 
8 ACCESS1-0 1  
9 CNRM-CM5 1 X 
10 CCSM4 2 X 
11 HadGEM2-CC 1  
12 GFDL-ESM2G 1 X 
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Table 3: Regional ordering of selected ensemble (based on RCP4.5). 

Order WNA ALA CNA ENA GRL 
1 CNRM-CM5-r1 CSIRO-Mk3-6-0-r1 CanESM2-r1 MPI-ESM-LR-r3 MPI-ESM-LR-r3 
2 CanESM2-r1 HadGEM2-ES-r1 ACCESS1-0-r1 inmcm4-r1 inmcm4-r1 
3 ACCESS1-0-r1 inmcm4-r1 inmcm4-r1 CNRM-CM5-r1 CanESM2-r1 
4 inmcm4-r1 CanESM2-r1 CSIRO-Mk3-6-0-r1 CSIRO-Mk3-6-0-r1 CNRM-CM5-r1 
5 CSIRO-Mk3-6-0-r1 ACCESS1-0-r1 MIROC5-r3 HadGEM2-ES-r1 ACCESS1-0-r1 
6 CCSM4-r2 MIROC5-r3 HadGEM2-ES-r1 CanESM2-r1 CSIRO-Mk3-6-0-r1 
7 MIROC5-r3 HadGEM2-CC-r1 MPI-ESM-LR-r3 MRI-CGCM3-r1 HadGEM2-ES-r1 
8 MPI-ESM-LR-r3 MRI-CGCM3-r1 CNRM-CM5-r1 CCSM4-r2 MIROC5-r3 
9 HadGEM2-CC-r1 CCSM4-r2 CCSM4-r2 MIROC5-r3 HadGEM2-CC-r1 

10 MRI-CGCM3-r1 CNRM-CM5-r1 GFDL-ESM2G-r1 ACCESS1-0-r1 CCSM4-r2 
11 GFDL-ESM2G-r1 MPI-ESM-LR-r3 HadGEM2-CC-r1 HadGEM2-CC-r1 MRI-CGCM3-r1 
12 HadGEM2-ES-r1 GFDL-ESM2G-r1 MRI-CGCM3-r1 GFDL-ESM2G-r1 GFDL-ESM2G-r1 

 
Table 4: Ranking of methods and overall assessment of performance as strong ( ), medium (OK), or weak 
(X) of tested methods as assessed by diagnostic 1 (correlation), diagnostic 2 (K-S test: similarity of distribution 
to observations), and diagnostic 3 (inter-station/variable correlation). See text for additional explanation. 

Method Diagnostic 1- Sequencing Diagnostic 2 - Distribution Diagnostic 3 - Spatial 
Rank Performance Rank Performance Rank Performance 

BCCI 1    1 / 2    3 X 
BCCA 2    3 X 2 OK 
BCSD 3 X     1 / 2  1  
 
Table 5: Downscaled climate scenario deliverables for each downscaling method. 

RCMs from NARCCAP 
Time slice Forcing # of scenarios 
1980-2000 NCEP 6 BCCI + 6 BCSD = 12 
1971-2000 Historical (20c3m) 10 BCCI + 10 BCSD = 20 
2041-2070 A2 10 BCCI + 10 BCSD = 20 

GCMs from CMIP5 
Time slice Forcing # of scenarios 
1950-2005 Historical 12 BCCI + 12 BCSD = 24 
2006-2100 RCP 2.6 9 BCCI + 9 BCSD = 18 
2006-2100 RCP 4.5 12 BCCI + 12 BCSD = 24 
2006-2100 RCP 8.5 12 BCCI + 12 BCSD = 24 
 

Table 6: GCM-driven NARCCAP ensemble members. NARCCAP uses a factorial experimental design with 
completed and planned runs indicated in the table with an X (completed runs) or a U (unavailable as of 
January 2013). See Mearns et al., 2007 and references therein as well as http://narccap.ucar.edu for RCM 
and driving GCM details. 

 RCM run 
CRCM ECP2 HRM3 MM5I RCM3 WRFG Total 

Driving 
GCM 

CGCM3 X    X X 3 
CCSM X   X  X 3 
GFDL  X X  X  3 
HadCM3  U U X   1 (3) 
Total 2 1 (2) 1 (2) 2 2 2 10 (12) 

  

http://narccap.ucar.edu/
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6 Figures 
 

 

Figure 1: Mean rank of all 7 member ensembles based on comparison of RCP4.5 projected change for all 
CLIMDEX indices during the 2050s and 2080s periods in the 14 Giorgi and Francisco (2000) regions in the 
Northern Hemisphere. The histogram shows all combinations of ensembles with 7 members. The dashed red 
line shows models ranked 20-26 in Table 1. Red asterisks show individual runs making up that ensemble. 

 

 

 
Figure 2: Giorgi Regions. The regions that intersect with Canada are ALA, WNA, CAN, GRL, and ENA. 
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Figure 3: Scatterplots of 2050s temperature vs. precipitation for winter (left column) and summer (right 
column) in Western North America (top row) and Eastern North America (bottom row). The blue numbers 
show the 12 members of the ensemble with the number denoting the ordering, blue dots show runs with rank 
larger than 12, and red dots show runs from models that were screened out. 
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Figure 4: RCM emulation maps of diagnostic 1 – sequencing (correlation) between 2050s TXX from CRCM 
and statistical downscaling from the driving CGCM3 run. 
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Figure 5: RCM emulation maps of diagnostic 2 – distribution (Kolmogorov-Smirnov D statistic) between 
2050s TXX from CRCM and statistical downscaling from the driving CGCM3 run. 
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Figure 6: Plots of diagnostic 3 – spatial (inter-station/variable correlations) for BCSD, BCCA, and BCCI for 
all stations in Bürger et al. (2012b).  
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