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1 Calibration Framework 

Calibration of the VIC-GL model employs a multi-objective calibration paradigm. This approach exploits 
several different data sources in order to produce an optimized model based on explicitly constraining 
separate hydrologic processes. A multi-objective approach recognizes there are multiple ways in which a 
model can be best fit to the data. Hence, multi-objective problems tend not to have unique solutions. 
Using a Pareto-optimized set of parameters accepts that there is no “best” parameter set (model) and 
reflects uncertainty due to errors in the model structure, boundary conditions (i.e. meteorological data, 
hydrometric data, and soil, vegetation and topography parameters) and observations. Realizations of 
the parameter vectors that constitute the Pareto set will also reflect the choice of objective functions. 

Consider a hydrologic modelling application in which we are given m observations xj, j = 1, …, m of a 
hydrologic variable (e.g., streamflow), m model output values yj, j = 1, …, m of the same variable, and n 
model parameters pk, k = 1, …, n. The Euclidean geometrical spaces of the observations and model 
output is ℝ! and that of the parameters is ℝ". Due to the presence of constraints acting on the model 
parameters, their domain is restricted to 𝑃 ⊆ ℝ", the feasible parameter domain. Let us consider a 
single objective function h, such that (Cavazzuti 2013) 

𝐠(𝐩) ∶ 𝑃 ⊆ ℝ" ⟶ 𝑌 ⊆ ℝ!,			𝑦# = 𝑔#(𝐩),			𝑘 = 1,… ,𝑚																											
𝑓(𝐩) ∶ 𝑃 ⊆ ℝ" ⟶𝐻 ⊆ ℝ	,						ℎ = 𝑓(𝐩, 𝐲, 𝐱) = 𝑓(𝐩, 𝐠(𝐩) − 𝐱) = 𝑓(𝐩) (1) 

 

where g and f are the functions defining the output variables (i.e., the model) and the objective function 
respectively. Both the functions have the design space P for the domain, while their ranges are 𝑌 ⊆ ℝ! 
for the output variable, and the solution space 𝐻 ⊆ ℝ for the objective function. Hence, in a single 
objective context the purpose of model calibration is to manipulate the values of p in order to drive the 
difference between simulated and observed values, yj and xj, to be as close to zero as possible. More 
formally, the aim of optimization is 

min
𝐩
𝑓(𝐩) , 𝐩 ∈ 𝑃 ⊆ ℝ". (2) 

 

Practically this involves finding an optimal parameter vector p* such than f(p*) < f(p) for all 𝐩 ∈ 𝑃. 

The calibration of hydrologic models often lends itself well to a multi-objective approach. An 
optimization problem is considered multi-objective if it contains more than one objective function. For z 
objective functions a multi-objective optimization problem can be formulated as 

min
𝐩
(𝑓%(𝐩), 𝑓&(𝐩), … , 𝑓'(𝐩)) , 𝐩 ∈ 𝑃 ⊆ ℝ" (3) 

 

where P is again the feasible domain of parameter vectors. Due to conflicting objectives, multi-objective 
optimization does not typically produce a single solution p* that would be optimal for all objectives 
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simultaneously.  Therefore, attention is instead paid to the Pareto optimal solutions. Such solutions are 
those where none of the objectives can be improved without deteriorating at least one of the other 
objectives. Thus a point in the feasible space p* is Pareto optimal if the vector of objective functions 
f(p*) is non-dominated. The Pareto frontier is given by the set of the objective functions in the solution 
space whose vectors {f(p)} are non-dominated. The corresponding values of the model parameters {p} 
form the set of optimum solutions. The result of multi-objective calibration is an approximation of the 
true Pareto frontier, which could be reached in the limit if an infinite number of sample sizes could be 
evaluated. The parameter values of this approximated frontier represent trade-off solutions providing 
the best compromises among the various objectives. 
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2 VIC-GL Calibration Overview 

Calibration of the VIC-GL model can be considered within the context of the water balance, which is 
given as 

𝑃(𝑡) = 𝑅(𝑡) + 𝐸(𝑡) +	
𝑑𝑆("(𝑡)
𝑑𝑡

+
𝑑𝑆)*(𝑡)
𝑑𝑡

+
𝑑𝑆(*(𝑡)
𝑑𝑡

+
𝑑𝑆)+(𝑡)
𝑑𝑡

+
𝑑𝑆*#(𝑡)
𝑑𝑡

 (4) 

 

where precipitation, P, into the basin at some time t is balanced by runoff, R, evapotranspiration, E, and 
changes in storage, S. Runoff includes all liquid water that exits a given domain as surface drainage and 
it usually considered the ‘excess’ component of the water budget. Evapotranspiration includes 
evaporation from the soil, evaporation of intercepted water from vegetation canopy, sublimation and 
transpiration. The final component of the water balance includes hydrologic fluxes created because of 
changes in snow (sn), glacier (gl), soil (sl), groundwater (gn) and lake (lk) storage. In order to ensure a 
robust and physically plausible model, it is desirable to explicitly target as many of the components of 
(4) as is feasible (i.e., for which data exists). Such an approach is ideally suited to a multi-objective 
calibration approach, wherein separate objectives are used to constrain the different components of the 
water balance. 

Precipitation, which drives the hydrology model, is constrained as a measured input. Nevertheless, P has 
potentially large biases, particularly at high elevations (Adam and Lettenmaier 2003; Adam et al. 2006). 
Runoff, a spatially distributed quantity, is not directly observed and streamflow is used as a proxy. With 
the advent of new satellite-based measurements of various hydrological phenomena, additional data is 
now also available to constrain additional components of the water balance, including 
evapotranspiration, snow, and glacier storage (see Section 3). Groundwater (here representing large 
regional aquifers and water stored in bedrock as opposed to local soil water) is not modelled in VIC-GL 
and its significance in BC is not well quantified (although it may be a significant source of error in other 
regions, such as the southern Columbia and Prairies). Lake storage is also not explicitly modelled in VIC-
GL and it’s effect on model error has not been quantified. 

The philosophy that governs the model calibration process is the desire to exploit the spatially 
distributed nature of the VIC-GL model. In an ideal setting, one would prefer to calibrate the model in a 
spatially explicit manner, i.e. grid cell by grid cell. However, as streamflow (or inflow) is typically the 
primary variable for water resources planning and management, the calibration design is dictated by the 
availability of discharge data. Hence, for calibration purposes the model domain is divided into sub-
basins based on the location of hydrometric sites. This sub-division represents a trade-off between 
number of calibration sites and available record lengths; longer record lengths (but with fewer sites) 
include more hydro-climate variability to train the model robustly whereas more sites (with shorter 
records) allows for a more realistic spatial variability in the model parameters. We conduct calibration 
on each individual sub-basin, wherein model parameters are manipulated as spatially lumped quantities. 
The compromise is that spatial variability is maintained between sub-basins but is generally lost within 
sub-basins. 

The results from preliminary calibration tests in several sub-basins were used to apply manual 
adjustments to parameters controlling transpiration and snow albedo decay (summarised in Table 1). 
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Early runs indicated that simulated evapotranspiration, ET, was generally too low in several test basins 
(Similkameen, Tulameen and Ashnola). As transpiration forms the largest proportion of ET, adjustments 
were made to leaf area index and minimum stomatal resistance values in the vegetation library to 
increase transpiration.  Monthly leaf area index for all classes was scaled by a factor of 1.25 and 
minimum stomatal resistance was reduced by a factor of 3 (which reflects minimum ‘canopy’ resistance 
as opposed to the original ‘stomatal’ resistance values) (Kelliher et al. 1995). Parameters controlling the 
rate of snow albedo decay were also adjusted to reduce the rate of snow albedo decay over time, 
generally resulting in increased snow accumulation and delayed onset of snowmelt. Based on these 
initial tests it was also determined that the temperature lapse rate, instead of using a spatially varying 
climatological value (derived from ClimateWNA), should be adjusted during calibration from a base 
value of 7.5°C/1000m. This adjustment generally results in steeper temperature lapse rates throughout 
the study domain and stronger gradients in snow accumulation with elevation. These adjustments were 
applied globally to the entire model domain. 

Due to the conflation of the glacier runoff signal with other runoff sources in streamflow data, the 
parameters controlling glacier runoff, GLAC_KMIN, GLAC_DK and GLAC_A (Table 1), were not calibrated 
for individual sub-basins. Instead, we used a single sub-basin, the Bridge River above La Joie Dam 
(BCHLJ; a heavily glaciated basin where discharge is considered very sensitive to glacier runoff) for 
calibration of these three parameters. Multi-objective calibration was carried out for BCHLJ and optimal 
values for the glacier runoff parameters were estimated using the average values from the best five 
runs.  These optimal parameters values were than set globally for the entire study domain. 

Modelled VIC-GL fluxes for all sub-basins were subsequently calibrated using the improved version of 
the non-dominated sorting genetic algorithm (NSGA-II) (Deb et al. 2002), an automatic evolutionary 
algorithm that solves the multiple objective global optimization problem. NSGA-II converges to and 
provides a sample of the Pareto frontier, which is a set of all parameter vectors that produce non-
dominated values of the objective function vector. Implementation of the NSGA-II algorithm was 
accomplished using the mco R package (Mersmann 2014). 

 

Table 1. VIC-GL Manual Calibration Parameters 

Parameter Adjustment Value Description 
LAI Scaling   1.25 Leaf area index 
RMIN Scaling   0.33 Minimum canopy resistance 
SNOW_ALB_ACCUM_A Absolute   0.95 Accumulation albedo decay parameter 
SNOW_ALB_ACCUM_B Absolute   0.40 Accumulation albedo decay parameter 2 
SNOW_ALB_THAW_A Absolute   0.85 Thaw albedo decay parameter 
SNOW_ALB_THAW_B Absolute   0.40 Thaw albedo decay parameter 2 
TLAPSE Absolute   7.50 Base temperature lapse rate (°C/km) 
GLAC_KMIN Absolute   0.05 Minimum glacier outflow factor 
GLAC_DK Absolute   0.50 Maximum increase in glacier outflow factor 
GLAC_A Absolute 15.00 Glacier outflow factor exponent 
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3 Automatic Calibration - Observed Data and Optimization Functions 

3.1 Discharge 

Streamflow data from various sources was used for calibration (Table 2). For regulated systems 
calibration was performed against naturalized discharge provided by BC Hydro, Rio Tinto Alcan and the 
BC Ministry of Environment (effects of regulation removed) and by the Bonneville Power Administration 
(Columbia basin; effects of regulation and irrigation removed). The calibration period for discharge was 
1991 to 2000, a period that represents a trade-off between a sufficiently long calibration period and 
large enough number of stations to spatially discretize the study domain. This period captures 
substantial low-frequency variability over the region, capturing several ENSO cycles (Climate Prediction 
Centre NOAA 2015). 

 

Table 2. Streamfow data sources 

Data Source Region Conditions 
Water Survey of Canada Canada Sites with unregulated discharge 
United Sates Geological Survey US Sites with unregulated discharge 
BC Hydro BC Naturalized discharge at BC Hydro generation sites in 

British Columbia (no regulation) 
Rio Tinto Alcan Nechako Naturalized discharge for Nechako River sites 

regulated by the Nechako reservoir 
BC Ministry of Environment Fraser Naturalized discharge for Fraser River sites regulated 

by the Nechako reservoir 
Bonneville Power 
Administration 

Columbia Naturalized discharge in the Columbia basin (no 
regulation and no irrigation) 

 

Estimation of streamflow at a specified gauge location (i.e., where measurements are available) requires 
parameterization of three sub-models: flux estimation (i.e., water balance calculation), grid cell routing, 
and channel routing. Grid cell fluxes of Runoff and Baseflow are estimated using the VIC-GL model 
whereas discharge is estimated using the RVIC routing model. During the calibration process only VIC-GL 
model parameters are adjusted. The routing parameters of the RVIC model were determined a priori 
and set globally and not adjusted as part of the calibration process. The routing parameters used in the 
current application are based on a previous calibration using gauging locations in the Fraser River basin 
(see Schnorbus et al. 2010) and the grid-cell unit hydrograph constructed using literature sources (see 
Appendix A). Hence, discharge calibration effectively calibrates the VIC-GL simulation of Runoff and 
Baseflow, where Runoff is strictly surface runoff and Baseflow is sub-surface runoff from soil storage. 

The objective functions for discharge are chosen to constrain different aspects of the streamflow 
regime. For the current application of the VIC-GL model, three objective functions were used. The Kling-
Gupta efficiency (KGE) goodness-of-fit measure was developed by Gupta et al. (2009) to provide 
diagnostic insight by decomposing model performance into correlation, bias and variability. The KGE is 
defined as 

𝐾𝐺𝐸 = 1 − G(𝑟 − 1)& + (𝛼 − 1)& + (𝛽 − 1)& (5) 
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𝛼 =
𝜎(
𝜎,

𝛽 =
𝜇(
𝜇-

 

 

 

where r is the linear correlation coefficient. Each of the terms in (5) have their optimum value at zero, 
such that the optimum KGE value is unity. From a hydrologic perspective usage of KGE makes sense, 
because in general we are interested in reproducing temporal dynamics (measured by r), as well as 
preserving the distribution of flows (flow duration curve), which can be summarized by the first and 
second moments (measured by α and β). Values for KGE range from one (perfect fit) to -∞. 

The Heteroscedastic Maximum Likelihood estimator (HMLE) (Sorooshian and Dracup 1980; Sorooshian 
et al. 1983) is the maximum likelihood, minimum variance, asymptotically unbiased estimator when the 
errors in the output data are Gaussian, zero mean, and uncorrelated and have nonstationary variance in 
time. The variance of the errors is assumed to be related to the level of the output (magnitude of the 
flows). Such errors are believed to be common in streamflow data. The HMLE is defined as 
 

𝐻𝑀𝐿𝐸 = OP𝑤.𝜀.&
"

./%

S T𝑛 VW𝑤.

"

./%

X
%/"

Y

1%

 (6) 

 

where ε(t) is 𝑦((𝑡) − 𝑦-(𝑡), w(t) is f(t)2(λ-1) and λ is the Box-Cox transformation parameter (Box and Cox 
1964). The parameter λ is estimated by setting f(t) = yo(t) and optimizing for each new parameter vector 
using the optimize package in R (R Core Team 2016). The HMLE places greater weight on lower 
values, which are considered to have smaller errors and more information, than higher values. 

A third objective function is the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970), defined as 

𝑁𝑆𝐸 = 1 −
∑ {𝑦((𝑡) − 𝑦-(𝑡)}&"
./%
∑ {𝑦-(𝑡) − 𝜇-}&"
./%

 (7) 

 

The NSE is essentially the mean squared error normalized by the standard deviation of observed values. 
NSE is as a classic skill score, where skill is interpreted as the comparative ability of a model with respect 
to a baseline model, which in this case is taken to be the mean of the observations. In this context if NSE 
≤ 0 the model is no better than using the observed mean as a predictor. An NSE equal one indicates 
perfect model performance. In our calibration procedure, the NSE is applied using log-transformed 
discharge, which we call the LNSE objective (NSE of log-transformed discharge). The LNSE objective 
tends to place more uniform emphasis throughout the entire flow range and therefore tends to 
encourage parameter sets that have improved performance during recession and low flow periods. 

Observed discharge at any location represents the total discharge generated by the entire upstream 
areas. For 2nd-order of higher sub-basins, VIC-GL runoff and baseflow integrate to produce local 
discharge only. Consequently, simulated local discharge must be combined with observed discharge 
flowing into the sub-basin from upstream sites prior to calibration. Unfortunately, the structure of the 
RVIC model does not allow the specification of in-channel flow as an upstream boundary condition. 
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Therefore, discharge (m3 s-1) from all upstream sites was converted to surface runoff (mm d-1) and added 
to the appropriate cell in the flux file. However, as RVIC routes all runoff through the VIC cell prior to 
adding it to the channel network, the added runoff had to be reverse convolved of in-grid routing prior 
to adding it to the appropriate upstream VIC cell using the following procedure 

𝑟2(𝑡) = T^𝑞2(𝑡) −P𝑟2(𝑡 − 𝑗 + 1) ∙ 𝑢(𝑗)
"

3/&

c 𝑢(1)1%Y86400 ∗ 1000/𝐴2  (8) 

 

where u is the grid-cell unit hydrograph, q is discharge observed at upstream cell c and A is the area (m2) 
of grid cell c. Reverse convolution is conducted at a daily time step using the daily unit hydrograph 
described in Table 3. 

 

Table 3. Daily unit hydrograph used for reverse convolution 
Day, j u(j) 
1 0.631978 
2 0.328619 
3 0.036218 
4 0.003185 

 

 

3.2 Evapotranspitation 

Observed evapotranspiration data is provided by the LandFlux-EVAL multi-data set synthesis (Mueller et 
al. 2013). This data set is a monthly global synthesis of land evapotranspiration estimates from 14 global 
data sets for the period 1989 to 2005. The data sets can be categorized into three groups: diagnostic 
data derived from in situ or satellite-based observations, estimates calculated via land surface models 
driven with observation-based forcing, or estimates obtained as output from atmospheric reanalyses. 
The various products are merged and provided as set of gridded statistics (minimum, maximum, median, 
mean, 25th percentile, 75th percentile and standard deviation).  The original merged product, which has a 
spatial resolution of 1°, was re-gridded to the spatial resolution of VIC-GL (1/16°) using distance-
weighted average remapping using the remapdis function in cdo, (CDO 2015). The re-gridded product 
is then used to calculate basin-wide monthly values of the minimum, maximum and median ET (emin, emax 
and emed, respectively). 

Given that ET is provided as a range, we use a membership function to quantify how well simulated ET 
values, es, fall within the maximum-minimum range of the ‘observed’ basin-wide monthly ET data. 
Specifically, we employ an objective based on the bell-shaped membership function (Zhao and Bose 
2002) 

𝐵𝑀𝐹45 =
1
𝑛
P

⎩
⎨

⎧ 1

1 + p𝑒((𝑡) − 𝑐(𝑡)𝑎(𝑡) p
&6

⎭
⎬

⎫"

./%

 (9) 
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where the width parameter, a, is set equal to [emax(t) – emin(t)]/6, the shape parameter, b, is set equal to 
a constant value of 2, and the parameter c, the centre of the curve, is set equal to emed(t). The bell 
function is smooth and non-zero at all points, with a maximum of one at emed. Although the bell function 
does not equal zero for values below (above) the emin (emax), the function rapidly approaches zero 
beyond these limits. The BMF as defined is essentially the mean of the individual monthly membership 
calculations, with values ranging from one (best) to zero (worst). The calibration period for monthly ET is 
identical to that of streamflow, which is 1991 to 2000 (n = 120). 

3.3 Snow Covered Area 

Snow covered area (SCA) data is used to constrain the snow accumulation and melt process in VIG-GL. 
Observed snow covered area (SCA) is provided by the MODIS/Terra Snow Cover Monthly L3 Global 
0.05Deg CMG, Version 6 (MOD10CM) (Hall and Riggs 2015). The MOD10CM product is a satellite-based 
global estimate of SCA based on the Normalized Difference Snow Index (NDSI). SCA is given as a snow 
cover fraction for each 0.05° grid. A time series of basin-wide monthly SCA for each sub-basin was 
produced by taking the weighted average of the overlapping 0.05° grids for each month. Area averages 
were calculated using the extract function from the raster R package (Hijmans 2016), using 
normalized weights based on the fraction of each cell within the sub-basin. The calibration period for 
SCA is January 2001 to December 2005 (n = 60). We use the KGE as the objective function for assessing 
SCA. 

3.4 Glacier Mass Balance 

For glaciated basins, an additional constraint was imposed by calibrating to glacier mass balance data. 
Observations were the geodetic thinning rates, ΔH, estimated for the period 1985 to 1999 by Schiefer et 
al. (2007). Thinning rates were provided as a basin-wide annual average, obtained by averaging a 100-m 
resolution difference grid over the glaciated regions of each sub-basin (as defined by the 1/16° sub-basin 
boundaries) and averaging over the measurement period (n=15 years). Uncertainty in the thinning rate 
was estimated as ±3.0 m for the observation period, based on a BC-wide standard error estimate of 
±0.19 m/a reported by Schiefer et al. (2007). Thickness changes were converted to water equivalent 
using an area-weighted density for firn (550 kg m-3) in the accumulation zone and ice (910 kg m-3) in the 
ablation zone. Area weighting used accumulation area ratios of 0.15 to 0.6 (conversion factors of 0.85 to 
0.7) (B. Menounos, personal communication). The lower and upper estimate of measured geodetic mass 
balance in water equivalent were then estimated as 

𝑏* = 𝑚𝑖𝑛	{0.7(∆𝐻 − 3), 0.85(∆𝐻 − 3)}
𝑏7 = 𝑚𝑎𝑥{0.7(∆𝐻 + 3), 0.85(∆𝐻 + 3)} (10) 

 

with a ‘mid-point’ estimate calculated as 

𝑏! = (𝑏7 − 𝑏*) 2⁄ . (11) 
 

We use the following bell membership function to assess model performance 
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𝐵𝑀𝐹8 =
1

1 + p 𝑏( − 𝑏!(𝑏7 − 𝑏*)
p
&. (12) 

 

3.4.1 Multi-objective Optimization Function 
The generic multi-objective problem specified by (3) now becomes 

min
𝐩
�𝑓%(𝐩), 𝑓&(𝐩), 𝑓9(𝐩), 𝑓:(𝐩), 𝑓;(𝐩), 𝑓<(𝐩)�, 𝐩 ∈ 𝑃 ⊆ ℝ" (13) 

  

where f1 = -KGEQ, f2 = HMLEQ, f3 = -LNSEQ, f4 = -BMFET, f5 = -KGESCA, and f6 = 1G(-BMFB), where 1G is equal 1 
if glacier area > 0 km2 and equal 0 otherwise. Note the use of negative signs for KGE, BMF, and LNSE to 
accommodate function minimization. Subscripts Q, ET, SCA and B refer to discharge, evapotranspiration, 
snow cover area, and glacier mass balance, respectively. The feasible parameter domain is defined using 
parameter ranges for individual elements of the vector p (see Section 4). 

 

3.5 Forcing Data 

During model calibration, VIC-GL was forced using a gridded meteorological data set produced 
specifically for the 2nd generation modelling. This data set contains daily observations gridded at 1/16° 
(same spatial resolution as VIC-GL) with the variables of maximum and minimum temperature, 
precipitation and average wind speed. The temperature and precipitation variables were gridded via 
thin-plate spline interpolation of station data using and a 30-year climatology based on ClimateWNA as 
a covariate. The wind speed observations were downscaled from the 20th Century Reanalysis, versions 2 
(20CR v2; Compo et al. 2011) via bi-linear interpolation. Werner et al. (in press) provides more details on 
the forcing data. 

 

  



10 
 

4 VIC-GL Model Parameters 

Most VIC-GL parameters are treated as ‘observed’ and not modified during the calibration process. Only 
a small set of model parameters are used to calibrate the model, chosen either because they are the 
most sensitive parameters (Demaria et al. 2007) or the they tend to reflect the more empirical aspects 
of the model (and as such may not have a physically measurable meaning). The VIC-GL parameters 
selected for adjustment during automatic calibration are described in Table 4. For each iteration of the 
calibration process, a parameter vector Θ = {𝜃%, 𝜃&, … , 𝜃#} was sampled by adjusting the individual 
elements of a base parameter vector Φ = {𝜙%, 𝜙&, … , 𝜙#} using three possible procedures (depending 
upon the parameter): 

• Absolute – original value replaced with 𝜃= = 𝑝=  
• Scaling – original value multiplicatively scaled as 𝜃= = 𝑝=𝜙=  
• Delta – original value additively scaled as 𝜃= = 𝑝= + 𝜙=  

where {p1, p2, …, pk} is a random vector sampled from the ranges given in Table 4. Parameter 
adjustments, p, were constrained to a precision of 0.001, except BI and DS that used a precision of 
0.0001. 

 

Table 4. VIC-GL Automated Calibration Parameters 

Parameter Adjustment Range‡ Description (with units where applicable) 
BI Absolute 0.5000 -  0.0001 Infiltration partitioning parameter 
DS Absolute 0.2000 -  0.0001 Baseflow curve parameter 
DSMAX Scaling 2.000 -  0.001 Maximum baseflow 
WS Absolute 0.950 -  0.200 Baseflow curve parameter 
EXPN Scaling 3.000 -  1.000 Vertical change in hydraulic conductivity in all soil layers 
D3 Scaling 3.000 -  0.500 Depth of third soil layer 
NEWALB Absolute 0.950 -  0.850 Albedo of new snow 
PADJ_R Absolute 2.000 -  0.250 Precipitation adjustment for rainfall 
PADJ_S Absolute 2.000 -  0.250 Precipitation adjustment for snowfall 
TLAPSE Delta 2.500 - -2.500 Temperature lapse rate (°C/km) 
GLACALB Absolute 0.600 -  0.200 Glacier albedo (when 1G = 1) 
GLACRF Absolute 1.000  - 0.000 Snow redistribution to glaciers (when 1G = 1) 

‡ Precision reflected by number of decimal places in the range values 

 

The BI parameter controls the partitioning of net precipitation or snowmelt into surface (or quick) runoff 
and infiltration (which ultimately becomes evaporation, transpiration or baseflow). The DS and WS 
parameters control the shape of the baseflow curve (specifically the location of the inflection point from 
where baseflow transitions from a linear to a non-linear function of soil moisture). DSMAX specifies the 
maximum baseflow velocity and base values are set as a function of local slope. This parameter is 
adjusted using the scaling approach in order to maintain the original spatial variability. The EXPN 
parameter (one per soil layer) describes the exponential change of hydraulic conductivity with depth. A 
nominal base value is estimated as 3+2/L, where L is the pore size index (which is a function of soil 
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texture). The EXPN parameter is adjusted by using the same scaling factor for each soil layer. D3 is the 
depth of the third soil layer, with nominal base values estimated as a function of local elevation and 
slope. Values for D3 are scaled during calibration to maintain the original underlying spatial variability. 
NEWALB is the albedo of new fallen snow. PADJ_R and PADJ_S are precipitation adjustment factors for 
rainfall and snowfall, respectively. TLAPSE is the temperature lapse rate in each grid cell. Although a 
base value was originally estimated per cell, using local temperature gradients estimated from Climate 
WNA, preliminary testing indicated that a global base value of 7.5°C/1000m was more effective. 
GLACALB is the albedo of glacier ice. GLACRF is a parameter that controls the redistribution of snowfall 
between non-glacier and glacier HRUs per elevation band. 

It is recognized that the use of separate precipitation adjustment parameter for rain and snow may 
introduce artefacts in the climate change projections. For forcing the hydrologic simulations, only 
precipitation is downscaled from the driving global climate experiment, and the partitioning into rain 
and snow is estimated in VIC-GL (using air temperature thresholds). Hence, under future climates the 
precipitation trend supplied by a GCM will be partitioned into separate rain and snow trends by VIC-GL, 
depending on the temperature trend (i.e. rainfall may increase and snowfall may decrease). 
Consequently, applying independent precipitation adjustments to rain and snow may inadvertently 
produce a precipitation trend in VIC-GL that differs from that in the driving climate experiment. 
Therefore, in practice the PADJ_R and PADJ_S parameters are always set equal during model calibration. 
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5 Parameter Selection 

Once the final set {p} of optimum solutions has been generated, typically only one solution from this set 
is selected for model projections. The process of parameter selection is conducted in two stages. The 
first stage is to adopt a fuzzy approach to ranking the parameter vectors in the Pareto optimum solution. 
For a given parameter vector, p, a fuzzy score is calculated as the weighted-average of individual 
membership values for each normalized objective function value as 

𝑆 = P𝑤> 	𝜇>(𝑓�>(𝐩))
'

>/%

							𝐩 ∈ 𝑃 ⊆ ℝ" (14) 

 

where 𝑓�>(𝐩) is fr(p) normalized to the range (0,1), μr(·) is the sigmoidal membership function  

𝜇>(𝑥; 𝑎, 𝑏) =
1

1 + 𝑒1?!(A16!)
, (15) 

 

where a determines the steepness of the function (if a is negative the function is open to the left) and b 
locates the value of x where 𝜇>  = 0.5, and w is the weight given to each objective function, where 
∑ 𝑤> = 1.0> . The parameter values for equations (14) and (15) are given in Table 5. 

 

Table 5. Parameter values for Fuzzy Score calculation 

Objective 
Parameter value with 

(without) glaciers 
a b w  

-KGEQ -20 0.25 0.3   (0.4) 
 HMLEQ -10 0.5 0.1   (0.1) 
-LNSEQ -10 0.5 0.3   (0.3) 
-BMFET -10 0.5 0.05 (0.1) 
-KGESCA -10 0.5 0.05 (0.1) 
-BMFB -20 0.25 0.2   (0.0) 

 

For the second stage of parameter selection, the final performance scores are ranked and the top ten 
vectors are selected for further evaluation. The second evaluation stage involves a heuristic assessment 
of model performance, based on a visual assessment of a number of different chart types (see Figure 2 
through Figure 7 for examples), plus a deeper inspection of additional metrics not used in the 
automated calibration process. The final parameter set is the one subjectively chosen as the ‘best’.   
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Figure 1. Example daily calibration period hydrograph for BCHLJ 

 

Figure 2. Climatological daily calibration period hydrograph for BCHLJ 
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Figure 3. Calibration period flow duration curve for BCHLJ 

 

Figure 4. Calibration period annual maximum peak flow scatterplot for BCHLJ 
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Figure 5. Calibration period monthly evapotranspiration for BCHLJ. 

 

 

Figure 6. Calibration period climatological monthly evapotranspiration for BCHLJ. 
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Figure 7. Calibration period monthly snow cover area fraction for BCHLJ. 
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Appendix A – Grid Cell Unit Hydrograph 

The RVIC routing model uses an hourly unit hydrograph per grid cell that describes the routing of within-
cell surface water to the grid cell outlet (i.e., to the main channel). For practical purposes, a single hourly 
unit hydrograph is prescribed for the entire modelling domain. This cell unit hydrograph was been 
estimated using the Soil Conservation Service (SCS) dimensionless unit hydrograph procedure (e.g. Bras 
1990). The dimensionless unit hydrograph, which is the result of averaging a large number of individual 
dimensionless unit hydrographs, has a time-to-peak located at approximately 20% of its time base and 
an inflection point at 1.7 times the time-to-peak. The dimensionless hydrograph describes the evolution 
of discharge using the time ratio, t/tp and discharge ratio, q/qp, where tp is time to peak and qp is peak 
discharge. Table A1 provides the ratios for the dimensionless unit hydrograph and the corresponding 
mass curve (Unit Hydrograph (UHG) Technical Manual, National Weather Service - Office of Hydrology 
Hydrologic Research Laboratory & National Operational Hydrologic Remote Sensing Center; 
http://www.nohrsc.noaa.gov/technology/gis/uhg_manual.html). 

The time axis of the dimensionless hydrograph was scaled using an estimated time to peak (Bras 1990) 

 

𝑡C =
𝐷
2
+ 𝑡D (16) 

 

where D is the duration of effective rainfall (in this case interpreted as daily) and tL is the lag time, 
calculated as (Cudworth Jr. 1989) 
 
 

𝑡D = 26 ∙ 𝐾" �
𝐿 ∙ 𝐿2
𝑆,.; �

,.99
 (17) 

 
where L is the distance of the longest watercourse (in miles), Lc is the distance from the basin centroid to 
the outlet, S is the overall slope of L (in feet per mile) and Kn is a weighted value of Manning’s roughness 
coefficient. The value for Kn is computed by (Arcement Jr. and Schneider 1989) 
 
𝐾" = (𝑛6 + 𝑛% + 𝑛& + 𝑛9 + 𝑛:)𝑚 (18) 

  
where nb is a base Manning’s value for a straight uniform smooth, channel in natural materials, n1 is a 
correction factor for the effect of surface irregularities, n2 is a value for variations in shape and size of 
the channel cross section, n3 is a value for obstructions, n4 is a value for vegetation and flow conditions, 
and m is a correction factor for meandering of the channel. Arcement Jr. and Schneider (1989) provide 
guidance for setting values of the various parameters in (18) for a range of conditions and channel types, 
and these have been set to represent generic conditions, summarized in Table A2, for small headwater 
channels located in mountainous topography. 
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Table A1. Ratios for dimensionless unit hydrograph and mass curve 

Time Ratios 
(t/tp) 

Discharge Ratios 
(q/qp) 

Mass Curve Ratios 
(Qa/Q) 

0.0 0.000 0.000 
0.1 0.030 0.001 
0.2 0.100 0.006 
0.3 0.190 0.012 
0.4 0.310 0.035 
0.5 0.470 0.065 
0.6 0.660 0.107 
0.7 0.820 0.163 
0.8 0.930 0.228 
0.9 0.990 0.300 
1.0 1.000 0.375 
1.1 0.990 0.450 
1.2 0.930 0.522 
1.3 0.860 0.589 
1.4 0.780 0.650 
1.5 0.680 0.700 
1.6 0.560 0.751 
1.7 0.460 0.790 
1.8 0.390 0.822 
1.9 0.330 0.849 
2.0 0.280 0.871 
2.2 0.207 0.908 
2.4 0.147 0.934 
2.6 0.107 0.953 
2.8 0.077 0.967 
3.0 0.055 0.977 
3.2 0.040 0.984 
3.4 0.029 0.989 
3.6 0.021 0.993 
3.8 0.015 0.995 
4.0 0.011 0.997 
4.5 0.005 0.999 
5.0 0.000 1.000 

 
Values for the remaining parameters have been chosen to reflect the fact that the SCS procedure is 
being used to describe surface routing within individual VIC cells, hence distances generally reflect the 
size of the VIC cells at the approximate centre of the PCIC modelling domain (55°N latitude). For a model 
spatial resolution of 1/16-degree the final values are D=24 hours (routing time step is daily), L = 6 km 
(3.73 mi), Lc = L/2 = 3km (1.86 mi), and S = 5%, resulting in tL = 6 hours and tp = 18 hours. 
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Table A2. Parameter values for Manning's roughness 

Parameter Value Description 
nb 0.040 Base roughness - cobble-boulder bed 
n1 0.008 Irregularity – moderate 
n2 0.003 Cross section variation – alternating occasionally 
n3 0.020 Obstructions - appreciable 
n4 0.002 Amount of vegetation – small 
m 1.000 Degree of meandering – minor 
Kn 0.073 Effective Manning’s value 

 

The relationship between t/tp and q/qp given in Table A1 was fit using local polynomial regression (locift 
R package; Loader (2013)) using a second-degree polynomial and a smoothing parameter of 0.2. This 
fitted model was then used to predict q/qp values at the required values of t/tp corresponding to every 
whole hour from t = 0, 1, …, T (where T = 96 hours and tp is as calculated). The final unit hydrograph is 
calculated by normalizing the dimensionless hydrograph using 

 

𝑞"(𝑡) = �
𝑞(𝑡)
𝑞C

� VP
𝑞(𝑡)
𝑞C

5

./%

X

1%

 (19) 

 

The final VIC cell unit hydrograph is given in Figure A1. It is noted that the final hourly unit hydrograph is 
somewhat unrealistic in that runoff peaks and declines at ~18 hours, despite that fact that the duration 
of ‘effective rainfall’ is 24 hours. In other words, it would be more realistic for the hydrograph to peak at 
~18-hours and remain plateaued until the cessation of rainfall (at 24 hours) and then decline. This 
represents a shortfall in the SCS dimensionless hydrograph approach for large durations, D. 
Nevertheless, the unit hydrograph produced is sufficiently accurate for estimating daily discharge. 
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Figure A1. Grid cell unit hydrograph (UH) and cumulative unit hydrograph (cum UH). 
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