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§1 Introduction

Empirical downscaling is based in a statistical analysis of present climatic conditions for an area, usually recorded by a 
number of variables from weather stations. The result of this analysis is a set of recipes (algorithms) and parameters from  
which the present climate, or at least some of its crucial aspects, such as extreme temperature values, can be recovered. By 
assuming that climate itself  is  characterized by the parameters and the recipe remains valid under different climatic  
parameters, empirical downscaling proceeds by applying this recipe to other, e. g. future, climates. The main purpose is to 
obtain the correct parameters for the future climate.

Given the multitude of techniques and results, downscaling intercomparison projects provide guidance for choosing 
the best method for a purpose in question. Ideally, there should be just one big intercomparison including all possible  
methods,  possibly  stratified  according  to  region.  Here  we  study  the  performance  of  the  three  methods  Expanded 
Downscaling  [Bürger, 1996],  TreeGen [Stahl et al., 2008], and the  Bias Correction Spatial Disaggregation [Wood et al., 
2002;  Salathe Jr et al., 2007], with respect to the simulation of the statistics of extreme events. These will be measured 
using the set of 29 core indices, Climdex , which is known to be relevant to a broad range of impact fields [Peterson, 2005].

Table 1. Climdex indices

ID Indicator name Definitions UNITS

CDD Consecutive dry days Maximum number of consecutive days with RR<1mm Days

CSDI Cold spell duration Days with at least 6 consecutive days when TN<Q10 Days

CWD Consecutive wet days Maximum number of consecutive days with RR>=1mm Days

DTR Diurnal T range Monthly mean difference between TX and TN ºC

FD0 Frost days Annual count when TN(daily minimum)<0ºC Days

GSL Growing season Length Days between first and last span of at least 6 warm enough days Days

ID0 Ice days Annual count when TX(daily maximum)<0ºC Days

PRCPTOT Annual total wet-day precipitation Annual total PRCP in wet days (RR>=1mm) mm

R10 Number of heavy precipitation days Annual count of days when PRCP>=10mm Days

R20 Number of very heavy precipitation days Annual count of days when PRCP>=20mm Days

R95p Very wet days Annual total PRCP when RR>95th percentile mm

R99p Extremely wet days Annual total PRCP when RR>99th percentile mm

Rnn Number of days above nn mm Days when PRCP>=nn mm, nn is user defined threshold Days

RX1day Max 1-day precipitation Monthly maximum 1-day precipitation mm

Rx5day Max 5-day precipitation amount Monthly maximum consecutive 5-day precipitation mm

SDII Simple daily intensity index Annual total precipitation divided by the number of wet days (PRCP>=1.0mm) mm/day

SU25 Summer days Annual count when TX(daily maximum)>25ºC Days

TN10p Cool nights Percentage of days when TN<10th percentile Days

TN90p Warm nights Percentage of days when TN>90th percentile Days

TNn Min  Tmin Monthly minimum value of daily minimum temp ºC

TNx Max Tmin Monthly maximum value of daily minimum temp ºC

TR20 Tropical nights Annual count when TN(daily minimum)>20ºC Days

TX10p Cool days Percentage of days when TX<10th percentile Days

TX90p Warm days Percentage of days when TX>90th percentile Days

TXn Min  Tmax Monthly minimum value of daily maximum temp ºC

TXx Max Tmax Monthly maximum value of daily maximum temp ºC

WSDI Warm spell duration Days with at least 6 consecutive days when TX>Q90 Days

As a target area we have chosen the two stations Shawnigan and Victoria in British Columbia, Canada, which have a 
sufficiently long data record and represent moderately different microclimates. The variables we are analyzing here are 
daily maximum and minimum temperature and precipitation. The methods we are comparing are the following:

a) Expanded downscaling (EDS)

EDS is an extension of classical multiple linear regression that preserves inter-variable and inter-station covariance.  
EDS is a linear model between selected large scale atmospheric fields and the local station variables. EDS has been used in  
numerous climate impact studies  [Menzel and Bürger,  2002] and has recently also been applied to weather forecasts 
[Bürger et al., 2009]. As predictors we have used upper air fields of specific humidity, precipitation, air temperature, and 
wind vectors, from the 700hPa and 850hPa levels, using the rectangular area between (133W, 44N) and (119W, 54N). All  
fields were normalized and EOF reduced, retaining 99% of the variance. Predictor selection from among the principal 
components (PCs) was done based on error statistics of the target variables, using 1961 to 1975 as calibration period and  
1976 to 1990 for validation. This resulted in the selection of 80 PCs. There was no notable artificial skill, at least not with  
respect to the indices, as discussed below.

b) TreeGen (TG)

TG is a downscaling technique that determines empirical relationships, based on synoptic types, between coarse-scale 
daily observed (NCEP) fields and daily observations of climate at one or more stations. In the present study the predictor  
fields are sea-level pressure, surface temperature, and surface precipitation. The process consists of four steps. First, a 
principal component analysis (PCA) of NCEP and GCM predictor fields over the historical period is carried out in order to  
maximize the signal present in the historical record. Second, synoptic types were determined by grouping values of the 
PCA scores of predictor fields in such a way as to produce 25 distinct groups (synoptic weather types) of daily station 
observations that are as similar as possible. Third, the weather for each type is generated stochastically by re-sampling the 
corresponding observations (due to the stochastic element, we show three TG realizations below).

Finally, a linear trend is overlaid over each type to account for changes in underlying climate associated with each  
type. Note that the third step introduces a stochastic element into TG, which we have tried to capture by using three  
realizations of TG for this analysis.

c) Bias corrected spatial disaggregation (BCSD)

BCSD originates from the requirement to downscale ensemble  climate model forecasts as  input  to a macro-scale 
hydrologic model (VIC model) to produce runoff and streamflow forecasts at spatial and temporal scales appropriate for  
water management [Salathe Jr et al., 2007; Wood et al.,  2002]. BCSD consists of three major steps to obtain spatial high 
resolution fields:

– bias correction of large scale monthly GCM fields against aggregated gridded observations, using quantile mapping 
(cf. the "empirical transformation of [Panofsky and Brier, 1958].

– spatial disaggregation of the monthly fields to the finer scale (of the VIC model) using a spatial delta approach.

– resampling of daily historical time series conditioned on the monthly fields (temporal delta approach).

Note that in the current setup BCSD is not geared towards point values (of stations) but average values of the nearest 
cell of the VIC grid (of size ~40 km2). This is certainly not a fair comparison, but the results do not change strongly when 
using the observed VIC grid instead as a reference.

§2 Reproducing present statistics

The Climdex software produces annual timeseries of the indices, a selection of which is shown in Fig. 1. We see EDS 
driven by NCEP and ERA40 fields, the three TG realizations, and BCSD. For the depicted indices the observed climate 
(mean and variability) appears to be reproduced quite well by all methods. Individual annual events are less well captured,  
depending on the method.

To analyze whether the observed climate, that is, the present statistical distribution of each index for the period 1961 to 
1990, is reproduced by the downscaling of present large-scale climate we use the technique of quantile-quantile (qq) plots,  
an example of which is shown in Fig. 2 for the same selection of indices. The Figure demonstrates that for the four indices  
all  methods reproduce  the  present  climate  quite  well.  Other  indices  are  less  well  reproduced,  even when driven by  
analyses. The present climate as downscaled from a GCM-simulated large-scale atmosphere (using the 20C3M simulation 
by EH5OM) is depicted in Fig. 3. 

The Figure shows, for another set of indices, that the downscaled values may be too low, as BCSD for SDII, or too  
high, as TG for Rnnmm and RX1day. In the two TG cases, although the downscaled values lie ’almost’ completely within 
the confidence band, the details of the statistical test (Kolmogorov-Smirnov) require the dismissal of these simulations as  
being significantly biased.

§3 Reproducing single years

A reliable simulation of the present statistical distribution of the Climdex indices is a necessary condition for the 
downscaling to produce credible results. If shorter-term climatic fluctuations can be traced as well this will give additional  
reliability  to  a  method.  We  have  therefore  also  checked  a  method’s  capability  to  resolve  the  actual  annual  index 
fluctuations when driven by the analyses.

Table 2 shows the overall performance of the three downscaling methods. When no value is given for a particular  
combination of  method and index,  the  method does  not  have  enough skill  to  simulate  the  index’s  climate  reliably.  
Otherwise, a number indicates the explained variance of the index by the method, based on the 1961 to 1990 period.

Table 2. Entries indicate that downscaled NCEP and 20C3M are within 99% confidence of observations, based on 1961 to  
1990. Numbers are explained variance for NCEP in %. Left spade: Shawnigan, right spade: Victoria.

index EDS TG (1) TG (2) TG (3) BCSD

CDD

CSDI

CWD -67

DTR -8 39

FD 70 -6

GSL 45 37 -6 -24 -78 -7

ID -36

PRCPTOT 10 -45 16 -37 53 36

R10mm -9 -46 -27 32

R20mm -86

R95p -29 -58 -64 -109 -119 -102 -75 -140 -50 -87

R99p

Rnnmm -33 -104 -10

RX1day -21 -108

RX5day -62 -99 -70 -72 -46 -53

SDII 9 -20 -28 -63 -12 -1

SU 46 -50 -59

TN10p 38 40 -34 -55 -40

TN50p 47 -8 -159 -124

TN90p 28 -234

TNn 41 31 -43 -25 -9

TNx -98 -51

TR

TX10p -10 -11 -38 -2 20 9 0 -45 -131

TX50p 53 69 -178

TX90p 8 -15 -40 -89 -5 -59 -23 -62

TXn 62 54 -40 -11 -45 -34

TXx -27 -25 -56 -43 -53 -61

WSDI

It should be noted that using 1991 to 2010 for verification has no systematic effect on the EV results. This is likely due  
to the fact that all three methods are not directly calibrated against any of these indices, so there is not much room for 
overfitting.

In summary, the statistical distribution of about half of the indices is reproducible for present climatic conditions.  
However, except for EDS there is little sensitivity of the methods to actual index anomalies in the annual record. Whether  
there is enough sensitivity to longer-term anomalies such as global warming remains unknown.
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Figure 3. Same as Fig. 2, using the 20C3M simulation by EH5OM for a different set of indices.

Figure 1. Downscaled Climdex indices (sample) for the station of Victoria (1018620), using EDS (blue), TG (green), and  
BCSD (red).

Figure  2. Quantile-quantile (qq) plot for the same indices as in Fig. 1. Confidence bands are based on the 99% level as  
obtained from the corresponding Kolmogorov-Smirnov test.
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