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Abstract 

This study follows up on a previous downscaling intercomparison for present climate. 

Using a larger set of 8 methods we downscale atmospheric fields representing present 

(1981-2000) and future (2046-2065) conditions, as simulated by 6 global climate models 

following 3 emission scenarios. At 20 locations in British Columbia we study local ex-20 

tremes as measured by the same set of 27 indices, ClimDEX, as in the precursor study. Pre-

sent and future simulations give 2×3×6×8×20×27=155520 index climatologies whose anal-

ysis in terms of mean change and variation is the purpose of this study. The mean change 

generally reinforces what is to be expected in a warmer climate: that extreme cold events 

become less frequent and extreme warm events become more frequent, and that there are 25 

signs of more frequent precipitation extremes. There is considerable variation, however, 

about this tendency, caused by the influence of scenario, climate model, downscaling meth-

od and location. This is analyzed using standard statistical techniques such as ANOVA and 

multidimensional scaling, along with an assessment of the influence of each modeling 

component on the overall variation of the simulated change. We find that downscaling gen-30 

erally has the strongest influence, followed by climate model; location and scenario have 

only a minor influence. The influence of downscaling could be traced back in part to vari-

ous issues related to the methods, such as the quality of simulated variability or the depend-

ence on predictors. Using only methods validated in the precursor study considerably re-

duced the influence of downscaling, underpinning the general need for method verification. 35 
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§1 Introduction 

This study presents a follow-up to a downscaling intercomparison study conducted for 

present climate [Bürger et al., 2012, henceforth dip1]. While dip1 exclusively dealt with the 

statistics of present climate extremes and the verification of a number of downscaling 

methods, here we study and compare the same methods, plus several others, with respect to 

their simulation from future emission scenarios. For a similar set of regions in British Co-40 

lumbia, Canada, see Figure 1, essentially the same model chain is employed, with several 

different global climate models being driven by a set of emission scenarios that are subse-

quently downscaled by multiple methods to various stations to simulate daily weather. 

Likewise, as in dip1 we use the set of 27 core indices that by now forms the international 

standard to monitor climatic extremes, and that is recommended by the Expert Team on 45 

Climate Change Detection and Indices (cf. http://cccma.seos.uvic.ca/ETCCDI); these ’Cli-

mate inDices of EXtremes’ (ClimDEX) are estimated from long-term statistics of daily 

temperature and precipitation series. 

To recapitulate the main setup and findings of dip1, we had used a threefold testing 

procedure for each of five downscaling methods (ASD, BCSD, QRNN, TG, XDS, acro-50 

nyms explained below) and each index: we checked the performance to reproduce 

ClimDEX statistics for present climate using analyzed (test 1) and simulated (test 2) atmos-

pheres; finally we checked each method’s ability to respond to observed climate anomalies, 

such as those expected from future change (test 3). To summarize the main findings: all 

temperature related indices pass about twice as many tests as the precipitation indices, and 55 

temporally more complex indices that involve consecutive days pass none of the tests; with 

http://cccma.seos.uvic.ca/ETCCDI
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respect to regions, there is some tendency towards better performance at the coastal and 

mountain-top stations; with respect to methods, XDS performed best followed by (in de-

scending order) BCSD, QRNN, ASD, and TG. 

A major challenge for the current study was to connect those findings for present cli-60 

mate to the results for the future scenarios. For example, unlike for the present where the 

quality or adequacy for extremes of a method or simulation is immediately apparent from 

comparison to observations, no direct equivalent exists for the unobserved future, where all 

one has is an array of projections for any particular location and scenario in question. There 

is the possibility of a ‘surrogate’ future climate, however, if high-resolution simulations are 65 

available that can play the role of nature. This is increasingly the case for global climate 

models (GCMs) driving regional climate models (RCMs) of higher resolution (~50 km and 

finer). Although this resolution will not reflect proper local extremes it offers an interesting 

path for testing statistical downscaling methods [Vrac et al., 2007]. 

Without any a priori knowledge about the projections, a first guess for the future mean 70 

climate is given by the average across all projections. Deviations from this mean are com-

posed of at least four factors: 

SCN: The particular choice of emission scenario. 

GCM: The global climate model that was driven by SCN. 

DSC: The downscaling method. 75 

LOC: The particular location of interest. 
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It is probably helpful to memorize these bold-capital acronyms of the four factors, be-

cause they play a central role in this study and appear frequently in formulas and figures; 

we will switch between acronym and its colloquial meaning as it fits. 

All four factors contribute in a specific way to the simulated change for any ClimDEX 80 

index, confounding the signal in a complicated way. One way to disentangle confounded 

signals of this type is by using analysis of variance (ANOVA). ANOVA comes in two fla-

vors, one that is purely descriptive by giving influence estimates for the various factors, and 

a second one that is inferential by also providing significance estimates for each factor in-

fluence. The inferential flavor can be used to establish significant factor contributions in a 85 

noisy environment, such as climate predictability [Zwiers, 1996], but it relies on a number 

of conditions (normality of residuals, homogeneity of variance, etc.) that are not easily met 

in experimental setups like ours. But this is irrelevant insofar as our main question is not 

whether a factor has a (significant) influence but how large it is. Therefore, we employ 

ANOVA in the simple descriptive way similar to, e. g., [Li et al., 2011]. In addition to that 90 

study we include LOC as an independent factor, which enables us to estimate the influence 

of location on the climate signal relative to the other sources. To our knowledge, no other 

study has previously subjected all four main sources of uncertainty, SCN, GCM, DSC, and 

LOC to a fully factorial ANOVA approach (§2.1). The ANOVA is accompanied with two 

related techniques; the first, influence of components (§2.2), puts a stronger focus on the 95 

single components, e.g. a specific GCM; the second, multidimensional scaling (§2.3), em-

phasizes the downscaling factor and renders a more geometric picture of the group of 

methods. We had also considered including natural variability as an extra factor but decided 
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against it, mainly in order to keep the study confined. Using 20 y averages should largely 

moderate natural variations, with residual variations showing up as GCM variability. 100 

By considering all factors with equal weight we are deliberately disregarding, for now, 

the results of dip1 or, for that matter, any other a priori knowledge that might affect the dif-

ferent factors (such as GCM performance for present climate, see also [Giorgi and Mearns, 

2002]). We will, however, return to this important point later and discuss how dip1 fits into 

the overall picture. It is best to think of dip1 and this dip2 as providing independent evi-105 

dence pro or contra a specific model setting. 

Of the numerous studies devoted to assessing climate scenario uncertainty, global and 

local,  [Déqué et al., 2007] is probably the study closest to our approach. It came out of the 

European project PRUDENCE [Christensen et al., 2007] whose main goal was to obtain 

high-resolution climate scenarios and corresponding uncertainty in order to improve climat-110 

ic impact assessments of extremes. [Déqué et al., 2007] analyze similar sources of uncer-

tainty (they do not consider location and use dynamical instead of statistical downscaling) 

for a simulated shift in mean seasonal temperature and precipitation for Europe, and find 

the GCM to be the major source. [Sain et al., 2011] analyze corresponding uncertainties 

within the North American Regional Climate Change Assessment Program (NARCCAP). A 115 

main characteristic of NARCCAP is the (almost) fully factorial GCM-RCM simulation ma-

trix, which allows disentangling the various GCM and RCM influences on the final result. 

Towards this goal, [Sain et al., 2011] employ a 2-dimensional (‘functional’) ANOVA design 

to obtain maps of the main factors. [Schmidli et al., 2007] conduct a detailed intercompari-

son of various statistical and dynamical downscaling techniques (see also dip1). As men-120 
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tioned, [Li et al., 2011] use a similar ANOVA approach for the analysis of regional climate 

models and statistical emulators thereof. 

In this study, we test a broad range of temperature and precipitation related extremes as 

measured by the set of 27 core indices, ClimDEX. The ClimDEX indices (cf. 

http://www.climdex.org), listed in Table 1, do not generally reflect the most extreme events 125 

conceivable, but instead represent ‘the more extreme aspects of climate’ which are a) 

known to be relevant to a broad range of impact fields [Peterson, 2005] and b) still man-

ageable statistically so that they can be reliably estimated from current data for present and 

future. With both aspects in mind ClimDEX has been adopted as a standard for extremes by 

the World Climate Research Programme (http://www.clivar.org/organization/extremes) and 130 

will be used accordingly in the fifth assessment report of the Intergovernmental Panel on 

Climate Change (IPCC) [Zhang et al., 2011]. 

For this study the downscaling methods from dip1 are augmented by four further meth-

ods that are widely used in the impact community. Likewise, instead of the three dip1 cli-

mate zones with six stations, the methods are now applied to a total of twenty stations cov-135 

ering eight different regions, ranging from coastal to mountainous to sub-arctic climate. 

§2 Data and Methods 

Each of the 27 ClimDEX indices of Table 1 are calculated from daily values of precipi-

tation, P, and minimum and maximum temperature, Tn and Tx, respectively; daily mean 

temperature will be denoted by T. Observed values of ClimDEX were calculated for 20 sta-

tions from the Environment Canada station network, as listed in Table 2. The selection of 140 

http://www.climdex.org/
http://www.clivar.org/organization/extremes
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stations was guided by two criteria: a) representative coverage of the study area and b) data 

completeness for present climate (at least 90% coverage for each variable between 1981 

and 2000). This represents a considerable extension of the dip1 set of 6 stations. 

The downscaling methods of dip1 that are tested here are 

BCSD: Bias Correction Spatial Disaggregation [Salathe Jr et al., 2007; Wood et al., 145 

2002] 

QRNN: Quantile Regression Neural Networks [Cannon, 2011] 

TG: TreeGen [Stahl et al., 2008] 

XDS: Expanded Downscaling [Bürger, 1996]. 

Details of the methods are described in dip1. Another frequently used method is the 150 

Statistical DownScaling Model [SDSM, Wilby et al., 2002]). Its automated version, Auto-

mated regression-based Statistical Downscaling (ASD), was part of dip1 and would have fit 

very nicely into the scope of this follow-up study. But because it exists only in closed-

source form (MatLab ’p-code’) it could not be adapted to handle large numbers of simula-

tions; hence neither SDSM (which is open source but not automated) nor ASD are covered 155 

here, unfortunately. Additionally to dip1, we have included four other methods: 

BioSim: A stochastic weather generator [Régnière and St-Amant, 2007] 

CDFt: A method using transfers of cumulative distribution functions [Michelangeli et 

al., 2009] 
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DQM: detrended quantile mapping, a BCSD version without spatial and temporal dis-160 

aggregation. 

LARS-WG: A stochastic weather generator [Semenov and Barrow, 1997].  

 The main technical ingredients of all methods are summarized in Table 3. We should 

note that the sheer amount of simulations occasionally required quite inventive computing 

techniques, such as the automated pushing of buttons for two of the methods. 165 

All downscaling methods were calibrated using NCEP I reanalysis fields [Kalnay et al., 

1996]. Projections of future climate were obtained from six GCMs, listed in Table 4, which 

belong to the multi-model dataset of the third Coupled Model Intercomparison Project 

(CMIP) conducted by the World Climate Research Program [Meehl et al., 2007] and were 

selected based on the availability of predictor fields, the main limiting factor being daily 170 

upper level fields. The corresponding simulations for present climate are based on estimates 

of the relevant forcing agents for the 20
th

 century (20C3M), and those for future climate on 

the well known scenarios B1, A1B, and A2 from the Special Report on Emission Scenarios 

(SRES) of the IPCC [Nakicenovic and Swart, 2000]; each of these simulations was 

downscaled using six methods, details of which are summarized in Table 3. 175 

We analyze changes of annual ClimDEX values between the periods 1981 to 2000 for 

present and 2046 to 2065 (as set out by CMIP3) for future climate. We first calculate index-

specific anomalies based on the operation Δ or Δ% as specified in Table 1, column 5, as fol-

lows: Relative to the index mean value for the present, C0, we calculate annual index 

anomalies relative to C0 either as a simple difference, denoted Δ, or, for many of the precip-180 

itation related quantities, as a relative change Δ/C0, denoted Δ%. This way the anomalies 
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become somewhat more standardized. We are under no illusion, however, that this has a 

large effect on some of the highly non-Gaussian indices such as tropical nights or ice days 

(TR, ID); but fortunately these are exceptions, as will be confirmed below. But the standard 

deviation even of the transformed indices still depends on their original physical units, 185 

which hinders, among other things, a comparison across indices. By calculating the t-value 

of a corresponding test for the differences of means we obtain a climate change signal in 

each index that has (roughly) zero mean and unit variance; to allow for changing variances 

we use the t-statistic as described by [Welch, 1947]. 

For each combination of SCN, GCM, DSC, and LOC this defines a mapping 190 

 
tΔCDX)( LOCDSC,GCM,SCN,  (1) 

The mapping (1) gives a total of 3 (emission scenarios) ×6 (GCMs) ×8 (downscaling 

methods) ×20 (locations) = 2880 estimates for each index change for the future climate of 

British Columbia. For each index, therefore, we can consider its mean change, that is, how 

it looks in the 2050s in BC in general, and how the 4 factors create variation around this 

mean change. While the entire study can be viewed as a sensitivity experiment with four 195 

independent agents, it should be noted that uncertainty originating from LOC on the one 

side and SCN, GCM and DSC on the other are inherently different: LOC effects are ex-

pected and physically consistent whereas any effect of the other factors on the outcome rep-

resents an unwanted uncertainty, as it entails a deviation from the truth. 

First we study the overall mean change for each index. We then analyze the variation 200 

about this mean and the influence of the factors, using three different techniques all of 
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which are related but focus on a different aspect: analysis of variance (§2.1), influence of 

components (§2.2), and multidimensional scaling (§2.3). 

§2.1 Analysis of variance 

In the analysis of variance (ANOVA) approach one tries to explain the overall variation 205 

of some quantity xi from contributions of a finite number of factors, each assuming a finite 

number lf of levels. This approach is particularly simple and appealing in balanced experi-

ments where the number of observations (‘responses’) is constant across all factors and lev-

els [e.g. Toutenburg, 2009]. If this ‘cell count’ is n, the overall sum of squared variations V 

can be decomposed into independent (orthogonal) contributions of the single factors, as 210 
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with x,x f

l  denoting cell and total mean of the xi and ε
2
 the residual sum of squared er-

rors; note that ε
2
 describes the unresolved variance within each factor level. The contribu-

tion of each factor can thus be expressed as a ratio to the overall variation V, which is usu-

ally called explained variance (EV) and measured in percentage. Since we employ a fully 

factorial ANOVA the condition of equal cell count is satisfied and Eq. (2) can be applied. 215 

We shall conduct the ANOVA using the four single factors, SCN, GCM, DSC, LOC, and the 

6 factor ‘interactions’ SCN×GCM, SCN×DSC, SCN×LOC, GCM×DSC, GCM×LOC, 

DSC×LOC. One could further decompose the residual variance into 3-factor and 4-factor 

interactions, but those are difficult to interpret so we do not use them; note that [Li et al., 

2011] introduce all interactions but actually never use them. 220 
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§2.2 Influence of components 

By way of ANOVA, a given total variance of some index change ΔCDXt is decom-

posed into the variations of factors. ANOVA does not provide information on how that var-

iation changes when factor levels are added; that is, how the total variation is influenced by 

each single factor level. For example, from ANOVA we know that downscaling has a strong 225 

influence in general, but how any particular method affects the variation remains unknown. 

To fill this gap we perform an extra analysis on the influence of each single component of 

the model chain on the overall uncertainty. We do this in a differential way, by calculating 

for any index the relative change of variance introduced by adding a single component. Let 

σ
2
 denote the variance of ΔCDXt across all simulations (that is, the normalized V from Eq. 230 

(2)), and for any component C, such as C = CGCM3 or C = BioSim, let 2

C¬σ  denote the 

variance of ΔCDXt across all simulations except those where C is involved. Our measure is 

then defined as 

2

2

C of influence
¬Cσ

σ
=

.  
(3) 

This measure takes positive values, with values <1 indicating a damping and values >1 

an amplifying influence on the variance. Note that this always relates to the variations from 235 

the other components of that factor, that is for C = CGCM3, from all other GCMs, so that 

factors with many components (levels) such as LOC will show a smaller influence (on av-

erage). By the same reason, influence from components that belong to the same factor 

should roughly have unit mean (with deviations caused by the nonlinear variance opera-

tion). We calculate this ratio for all indices of ClimDEX and all 3+6+8+20=37 single model 240 

components from SCN, GCM, DSC, and LOC. 
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§2.3 Multidimensional scaling 

Each single downscaling method is characterized by an array of 3×6×20=360 different 

numbers, consisting of all possible combinations of scenarios, GCMs, and locations. Re-

ducing such wealth of criteria based on some ad-hoc argumentation for or against some of 245 

the components, e.g. to discard some GCMs, is never really free of cherry-picking, so we 

avoid this. Towards simplicity, there are several ways to accomplish this type of reduction, 

most of them based on some fairly general mathematical principles: How can a set of 8 

(DSC) points in a 360-dimensional space be represented mathematically in a space of much 

lower dimension, without loosing too much information? - In climate research one immedi-250 

ately thinks of principal component analysis (PCA) with its numerous applications for at-

mospheric or oceanic fields. Out of a large sample of realizations PCA extracts the main 

directions (i.e. patterns) of variability – and there are usually only a few - and projects each 

single case onto these few axes to obtain a low-dimensional representation. Hence naturally 

PCA depends on a large sample size, so that in our case of ’only’ 8 downscaling methods it 255 

is not applicable. A very general approach to the problem of dimension reduction is one that 

tackles the high-dimensional geometry solely through the concept of mutual distance. For 

any group of points living in a high-dimensional space the main question then is: How can 

the set of mutual (Euclidean) distances be realized by another group of points in some oth-

er, preferably low-dimensional space, and how accurate is that approximation? This is 260 

called Multidimensional scaling (MDS), and it provides a concise and usually quite illustra-

tive way of describing high-dimensional dissimilarities in a simple plot of low dimensions 

(two or three is often enough). 
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Specifically, given the mutual dissimilarities of n entities in a matrix, D=(dij), the dij are 

approximated by the Euclidean distances of n ‘real’ points zi in a low-dimensional space, 265 

the approximation being performed based on some measure of closeness. Using least-

squares, one has to minimize the so-called stress function 

S (z 1,... ,z n)=∑
i≠ j

(d ij−∥z i− z j∥)
2   

(4) 

It is known that problems of this type are complicated by the presence of local minima, 

so that standard optimization recipes such as gradient descent methods often become 

trapped in these minima [Groenen and Heiser, 1996]. A method that appears to be apt to 270 

this special form (4) of the cost function is the so-called “Scaling by majorizing a convex 

function” (SMACOF) [De Leeuw and Heiser, 1977]. To minimize (4), SMACOF iteratively 

replaces the cost function by suitable smooth convex functions and applies standard tech-

niques of convex analysis to optimize those (convex functions have only one global mini-

mum). SMACOF has proved to be more resilient for the stress optimization (4), although 275 

local minima are hard to overcome in general. But note that even the global minimum is 

only unique up to a group of orthogonal (Procrustes) rotations. To further guard against lo-

cal minima we have applied MDS multiple times, using 50 random initializations reflecting 

the general scale of distances, and selecting from the appropriately rotated solutions the one 

with minimum stress function. 280 

We will employ MDS for the 8 downscaling methods. Any particular method is charac-

terized by 2880/8=360 ΔCDXt values per index; by grouping them into T and P indices this 

accumulates to 360×16=5760 and 360×11=3960 values, respectively. These are the dimen-
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sions of the space in which we take the Euclidean distance of any two downscaling ‘points’ 

as a dissimilarity measure. 285 

§3 Results 

All ClimDEX definitions are based on the three variables P, Tx, and Tn. Several indices, 

moreover, are given relative to a base period that serves to represent the climate normals. 

For example, TN90p (warm nights) describes the ratio of days with Tn being warmer than 

the normal (present) upper 10% quantile (relative to calendar day). For a future scenario, 

therefore, the signal size depends both on the projected anomaly itself and on the base vari-290 

ability. The above ratio can easily be calculated if the effect of climate change is a uniform 

shift of the entire distribution, by simply solving the corresponding integral equations for 

the distribution function. For Gaussian quantities the ratio is then a simple function of the 

future shift relative to the present standard deviation. In the case of TN90p, for which nor-

mality is a reasonable, albeit heuristic first order approximation, the ratio grows from 10% 295 

for zero change to values near 80% for a shift of 2 standard deviations. With or without 

normality, the future mean change relative to the present variability provides a good heuris-

tic for the change of extremes in P, Tx, and Tn. Present variability is calculated as the stand-

ard deviation of each series after removing the seasonal cycle (as anomalies per calendar 

date). We show this heuristic for all simulations, grouped by downscaling, in Figure 2. A 300 

few things require attention: First, especially for Tx and Tn the LARS-WG markers appear 

shifted to the left, as compared to the other methods, which indicates a loss of simulated 

variability. Also note that, for the low variability range LARS-WG simulates fairly large 

mean changes, which inevitably has an impact on the projected extremes, as we shall see. 
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At the high variability range we see quite different scales for the methods. For example, 305 

maximum P variability is much larger for QRNN, TG and XDS, approaching and for 

QRNN exceeding 12 mm/d, and for Tx and Tn, maximum variability is especially low for 

LARS-WG (less than 6 and 5 deg, resp.). Again, this lack of variability is bound to produce 

large extremes. Note also that near the scale of 8 mm/d, LARS-WG produces an obvious 

outlier with very large mean signals for one particular station (which happens to be the 310 

mountain station 117CA90 at 1875 m altitude). 

For each location, observed and simulated variability are compared in Figure 3. It con-

firms that LARS-WG underestimates present temperature variability, showing the largest 

deviations with root mean square (rms) values of about 0.7. Interestingly, the P variability 

agrees best for this method, which may point to problems in deriving correct temperature 315 

values from the wet and dry spells. The Figure also shows an overestimation of Tx and Tn 

variability for TG and an overestimation of P variability for QRNN. Note also the Tn outli-

ers for BioSim. 

An interesting feature of Figure 2 is the increase of the projected Tx and Tn change with 

variability, which is evident at least for QRNN and XDS. A closer inspection reveals that 320 

such a nonzero proportionality is indeed seen in all methods, with varying degree. As Fig-

ure 4 shows, all simulated temperature signals show this proportionality to the simulated 

(present) variability, with significantly (α=1%) nonzero slopes in almost all cases. A similar 

but weaker proportionality holds for P, except for QRNN and XDS, interestingly, for which 

the T proportionality was strongest. This is unlikely a common artifact of all methods, but 325 

instead indicates real (mathematical, physical) phenomena. First, the simulated mean 

change may to some extent be proportional to the overall scale of variability, which would 
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apply especially for the long-tailed P distribution. From a more physical reasoning, proxim-

ity of the ocean and corresponding larger thermal capacity leads to attenuated temperature 

variability, a tendency that is also seen for the 20 locations of this study (not shown); more-330 

over, for the decadal timescales pertinent to radiative heating, different warming rates of 

land and sea are the result of a more effective evaporative heat-loss over the wet ocean sur-

face, an argument that goes back to [Manabe et al., 1991]. 

As suggested by Figure 2, XDS in particular tends to project negative P signals, espe-

cially so for the sites with large variability (analogous to the case for temperature). Apart 335 

from this, larger signals of decreasing P are only simulated by LARS-WG and TG. Because 

of its general importance we did an extra analysis for P, as shown in Figure 5. For any 

combination of GCM and DSC it displays the simulated mean SRESA1B changes, denoted 

ΔP(GCM,DSC). For better resolution we show the results in two dimensions, by projecting 

each original value ΔP(GCM,DSC) onto two slightly different axes: 340 

x=λΔP(GCM,DSC)+(1-λ)ΔP(GCM,:) and y=λΔP(GCM,DSC)+(1-λ)ΔP(:,DSC), 

with '...' denoting average and using a weight of λ=0.5. It shows that negative signals are 

produced mainly by GFDL2, the largest being ΔP(GFDL2,XDS). Most positive signals 

come from CGCM3, with moderate signals from QRNN, TG, and XDS and larger ones 

from the rest. The same DSC clustering is apparent from all other GCM. 345 

Each index is now analyzed in terms of the t-value, ΔCDXt, of the mean difference be-

tween the 20 simulated annual values of future (2046-2065) and present climate (1981-

2000), leading to 2880 simulated changes for each index. It turned out that for all indices 

except CSDI and TR and a few cases of ID, most of the annual index anomalies are in fact 

Gaussian, according to a Kolmogorov-Smirnov test (not shown); in these cases ΔCDXt is t-350 
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distributed. Unlike the more standard case of a t-test with equal variance, the distribution 

parameters in this case, including the significance level for nonzero values (=climate 

change), depend on the sample variance. This dependence of the significance level turns 

out to be quite weak, however, with a mean value of 2.73 and a standard deviation of 0.03 

for the α=0.01 level. 355 

Despite having a unified scale for all index changes now - roughly unit sampling vari-

ance (= unchanging climate) - the projected change proves to be very different for the tem-

perature and precipitation related indices, to which we refer simply as T and P indices, re-

spectively. We will discuss both separately. The overall change for each index, using all of 

SCN, GCM, DSC, and LOC, is shown in the boxplot of Figure 6. We remind the reader that 360 

each box represents the inter-quartile range (IQR, between the 25% and 75% quantiles) of 

the sample; sample minimum and maximum are indicated by the whiskers, unless those 

extremes are beyond 1.5×IQR in which case a “•” is displayed to indicate an ‘outlier’ (an 

“x” for 3×IQR). This phrase should not be taken in a literal statistical sense because, if the 

results can be interpreted at all as coming from a random distribution, that distribution is 365 

very likely non-Gaussian. By an outlier we merely indicate simulations that may require 

special attention. Along with the boxplots we have indicated the level of significance of any 

single change being nonzero, by using the constant mean value of 2.73 (see above) across 

all indices. This is only to indicate the scale that single random simulations may attain and 

as such does not pertain to e. g. the significance of the overall mean. 370 

The T indices show the behavior expected in a warmer climate, that is, signals that are 

significantly decreasing for FD, ID, TN10p, TX10p, and increasing for most of the others, 

and this frequently applies to the entire IQR of the index. Most of the changes of the P indi-
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ces are insignificant or ambiguous, with both increasing and decreasing tendency. The 1% 

significance level shown in the Figure is based on a normally distributed quantity, a condi-375 

tion that is not necessarily met here. 

 

Figure 7 shows the results for the individual downscaling methods. For the T indices, 

the signals shown in Figure 6 are generally reproduced by the single methods, with varying 

amplitudes. As can be seen from the different axis scale and significance strip, BioSim and 380 

LARS-WG have exceptionally strong signals, and the other methods share similarly mod-

erate signals. The ΔCDXt values are outside the significance band for most indices, similar 

in direction between methods, but differing in magnitude, indicating unique responses for 

all simulations; only CSDI and DTR are ambiguous across all methods. The opposite is true 

for the P indices, which also reaffirms the results for the mean result (Figure 6), with little 385 

significance for the main body (IQR) of the simulations. Note that QRNN and TG, but es-

pecially XDS produce a number of significantly negative signals (CWD, PRCPTOT, 

R10mm, R20mm, R95p). 

Because temperature signals are relatively large compared to the ’noise’, but also be-

cause of their greater normality, the ΔCDXt values are generally larger for the T indices (see 390 

discussion above). Moreover, probably due to their sensitivity to the simulated present vari-

ability ‘outliers’ are found more often for these indices (see Figure 2). This is almost cer-

tainly the case for several of the extreme outliers such as CSDI, ID, TN10p, TN90p, TXx, 

WSDI, which all originate from LARS-WG. This method generally produces less interan-

nual variability than the others, which leads to very strong change signals for these indices. 395 

While the outliers for T are generally in the direction of the overall signal of the IQR, P out-
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liers are seen in both directions, reinforcing their overall uncertainty. The strongest positive 

P outliers are produced by CDFt and DQM and the strongest negative ones by QRNN and 

especially by XDS. 

For the most extreme positive and negative ΔCDXt values we show the corresponding 400 

simulations in Figure 8, separately for T and P indices. For T, we see two striking examples 

of very strong positive and negative index changes as projected by LARS-WG. One is 

warm nights (TN90p, SRESA2, CGCM3, 1021480), whose frequency increases from 10% 

(by definition) to about 80%, and the other is frost days (FD, SRESA1B, MIRO3, 

1125700), whose number decreases from over 100 to less than 40. The case for TN90p 405 

(SRESA2, CGCM3, 1021480), which is a quantile-based index, happens to correspond to a 

minimum of simulated present Tn variability, cf. Figure 2, so that, following the normality 

argument outlined above, even a moderate shift in the mean can lead to very large increases 

in the index. The FD case is less obvious but also threshold based, so it may come from the 

same reduced variability. For P, the strongest positive outlier is also from LARS-WG, 410 

which projects daily intensity (SDII, SRESA1B, CGCM3, 1090660) to increase from 

6.5 mm/d to 8.0 mm/d; this will further be discussed in §4. The negative precipitation pro-

jections from GFDL2 downscaling, and here especially by XDS, were already mentioned 

around Figure 5. 

§3.1 Analysis of variance 415 

The results of the 4-way ANOVA are shown in Figure 9. It is obvious that DSC has the 

strongest influence, especially for the T indices; DSC often explains more than 50% of the 

variation while for the P indices that value varies around 10%. For P, the main source of 
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variation comes from the GCM (along with GCM•LOC) which explains 20-30% for 

PRCPTOT and R10mm. Generally, the contribution of LOC alone is marginal, with the ex-420 

ception of ID with about 20% and particularly TR with more than 40% EV. But there is a 

sizable influence of the combined factors DSC•LOC, with EV values of at least 10% across 

all indices and more for the T indices. There is some influence of SCN on the T indices, 

especially SU, TNx, and TXx with EV values of about 10%; there is hardly any influence 

on the P indices. Figure 9 also reveals that variations in the T indices are overall better ex-425 

plained by this ANOVA (4-way with simple interactions), where several of them exceed 

levels of 80% of EV. P indices vary about 50% EV. 

§3.2 Influence of components 

The results for the influence of the single components is presented in Figure 10. Please 

note that a damping (values < 1) or amplifying (values > 1) influence says nothing about 430 

the direction of the signal (such as warming or cooling), only about the increasing or de-

creasing uncertainty. First, the lesser relative influence of the 20 locations is obvious, al-

most all showing values near 1 (remember that influence depends on the number of factor 

components, see §2.2). There are a few exceptions, though, for ID (1090660) and TR 

(1125700, 1123992). We have seen the ID instance also in two outlier cases of Figure 8, 435 

which may point to a data problem for the location 1090660 (although some ad-hoc check-

ing did not reveal anything obvious). A more likely explanation is, however, unreliable sta-

tistics due to poor sampling for some stations (too few cases for some climates), which 

would explain the TR instance as well. Obviously a very large influence on the variation 

comes from LARS-WG, by strongly affecting all T indices, and partly from BioSim with a 440 
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large impact on minimum and maximum temperatures (TNn, TNx, TXn, TXx), but also 

CDD. Of the downscaling methods, XDS has an amplifying influence on the P index uncer-

tainties. This is likely related to the fact that XDS produces negative P signals in several 

cases, see Figure 7. The strongest source of GCM uncertainty comes from CGCM3, affect-

ing most of the Tn indices, followed by GFDL2 with an impact on some P values. CNRM3 445 

has some affect on TR, interestingly. Note the marked and widespread damping of all T 

index variations from most of the downscaling components, to counter the amplification 

from BioSim and LARS-WG. With respect to scenarios, SRESB1 has a damping and espe-

cially SRESA1B an amplifying influence. Note that this must not be mistaken as a cooling 

or drying influence; it points, instead, to enhanced uncertainty from the overall larger signal 450 

amplitudes in the case of SRESA1B. 

§3.3 Multidimensional scaling 

Figure 11 shows the results of the MDS conducted on the T and P indices. With regard 

to the T indices, LARS-WG and BioSim are obvious outliers. The other methods are much 

closer, with a central cluster containing DQM, CDFt and BCSD and another cluster formed 455 

by QRNN, TG and XDS; these secondary clusters are of course somewhat arbitrary. This 

constellation reflects the findings of Figure 7 where BioSim and LARS-WG showed by far 

the strongest signals. The results for the P-indices show a larger spread. DQM and CDFt 

are fairly close again and occupy the center, being surrounded uniformly by the other 

methods. 460 

Please remember that the MDS axes do not represent physical dimensions (such as a 

climate change signal) but a mathematically optimal two-dimensional embedding of the 
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original 5760 (for T) and 3960 (for P) dimensional space. The quality of this embedding is 

shown in Figure 12. For each pair of downscaling “points” it displays their Euclidean dis-

tance in the original vs. that in the reduced space. A clustering of distances is noticeable for 465 

the T indices, which is likely due to the ’outlying’ role of BioSim and LARS-WG. Relative 

to this expansion of distances the T indices appear to be better approximated. 

§3.4 Selecting downscaling methods 

As evident from Figure 9, the 8 downscaling methods have the strongest influence on 

the overall uncertainty of the scenarios. It seems natural, therefore, to try to reduce this in-470 

fluence by selecting only some of the methods. But to make that selection, additional inde-

pendent evidence is needed. The most obvious criterion is the performance for present cli-

mate, which was done in dip1 with a not fully overlapping set of methods. Here we take the 

three best-performing methods of dip1, namely XDS, QRNN, and BCSD, and repeat the 

ANOVA of Figure 9 with these. For comparison, we take another three methods, namely 475 

CDFt, DQM, and TG which occupy the center of MDS (cf. Figure 11). The results are 

shown in Figure 13. Evidently, in both cases the influence of downscaling is sharply re-

duced compared to Figure 9, which at least for T is most likely due to the removal of Bi-

oSim and LARS-WG from the DSC set, and now GCM forms the main source of uncertain-

ty. This holds for both T and P indices. For the verified methods, DSC and especially the 480 

coupled factor DSC•LOC still shows some influence, varying at about 20% in total; for the 

three methods from the MDS center the influence of DSC has practically vanished, leaving 

only GCM and GCM•LOC as the main source of variation. But given that the selection is 



24 

 

based on MDS similarity this is of course to be expected, since ANOVA and MDS provide 

rather similar and partly redundant information. 485 

§4 Discussion 

We first turn our attention to the overall simulated mean for each index. The results 

were generally very different for the T and P indices. For the former, the main message is 

that the simulations tend to agree that extreme warm events are getting considerably more 

frequent and the opposite holding for cold events; this is of course no surprise and hardly 

requires any downscaling to determine [e.g. Kharin and Zwiers, 2000]. For the latter, the 490 

bulk of the simulated changes are insignificant. Several significant outliers, nevertheless, 

simulate increasing or decreasing heavy precipitation, as discussed further below. 

It was the purpose of this study to analyze and understand the variations about this 

mean signal, with a particular focus on the downscaling methods. And in fact, downscaling 

turned out to be the major factor influencing the simulated change. Along with LOC as a 495 

combined factor, DSC explains more than 60% of the variation in the signal for many of the 

T indices. The strong dependence on DSC as a single factor shows that different methods 

have a uniform affect across the entire region, the effect of LOC being only secondary. The 

P indices, on the other hand, show a stronger susceptibility to the GCM (~10%). The influ-

ence of SCN is negligible in both cases, which is somewhat expected due to comparatively 500 

little difference in emissions for the 2046 to 2065 time horizon, especially for the P indices. 

From the influence and MDS analyses it became apparent that the large spread especially 

for the T indices was caused by somewhat ’outlying’ index projections of BioSim and 

LARS-WG. 
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This outlying behavior of BioSim and LARS-WG could be traced back to a bias in 505 

simulated present variability, which has a strong influence especially on all quantile-based 

indices. In both cases variability is generated purely stochastically from a parametric 

weather generator. LARS-WG simulates the length of dry and wet spells as a Poisson pro-

cess and derives all other variables from that process; a misfit of the corresponding expo-

nential parameters therefore has large consequences; moreover, interannual variability is 510 

not (explicitly) simulated at all. The LARS-WG cases of Figure 8 may all be related to this, 

including precipitation intensity (SDII) which depends on the number of wet days. BioSim, 

on the other hand, generates stochastic weather sequences from an array of long-term 

monthly statistics, including interannual, but lacks about 15% of the variance [Régnière and 

St-Amant, 2007]. 515 

The P indices, on the other hand, did not show comparable systematic outliers. The ex-

treme low end was a 40% reduction of PRCPTOT projected by XDS using GFDL2 (SRE-

SA2, 1090660). This must be seen in the context that GFDL2 is the driest of the GCMs, 

with QRNN, TG, and XDS being the driest of the GFDL2-driven methods. These are the 

methods that make use of upper level predictor fields, which in the case of GFDL2 contain 520 

fairly large undefined grid cells over the Rocky Mountains. Accordingly, these potentially 

crucial gridpoints cannot be used for the NCEP calibration and may render the methods 

sub-optimal in some cases. But as long as there is no objective criterion our judgment may 

not even be relevant or, in fact, the downscaling may be even more consistent with the pro-

jected GFDL2 fields; at least the corresponding calibration statistics do not indicate other-525 

wise. In any case, this points to the general sensitivity of QRNN, TG, and XDS to the usual-

ly large set of potential predictors and, consequently, their exposure to over- or underfitting. 
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The overestimation of P variability by QRNN and of Tx and Tn variability by TG was likely 

caused by an imperfect choice of independent predictors. Note, however, that this fact does 

not per se invalidate the corresponding (negative) P projections. The remaining methods 530 

(BCSD, CDFt, DQM) did not show any major issues. Being based on quantile mapping 

they are generally closest to the driving GCM, and their calibration consists of “merely” 

finding the best mapping of the respective distributions. 

Many of the facets of the different downscaling methods, it thus appears, derive from 

their particular methodological setup. Moreover, they roughly correspond to the clusters of 535 

the MDS analysis, at least for the T indices. We summarize therefore the main features of 

these three groups in Table 5. 

All methods, especially QRNN and XDS, exhibit a proportionality of simulated present 

variability and future signal for Tx and Tn, which, as we have seen, is equivalent to larger 

warming rates inland. All methods, with the interesting exception of QRNN and XDS, also 540 

show a proportionality for P, which is likely a simple scaling effect from the long-tailed 

distribution (but why not for QRNN and XDS?), and perhaps also some influence of loca-

tion since the increase was mainly at the coast. Note, however, that the proportionality of P 

is weak after all. 

The described projection spread changes drastically if the analysis is confined to 545 

downscaling methods that were established as reliable through independent verification. 

Using only XDS, QRNN, and BCSD as the most reliable methods of dip1, the influence of 

downscaling was strongly diminished, leaving GCMs as the main source of uncertainty. 

Unfortunately, the remaining methods (BioSim, CDFt, DQM, LARS-WG) were not part of 
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dip1 and are thus untested, and testing them here as in dip1 was beyond the scope of the 550 

current study. 

This enforces the need for independent verification of all components. In fact, only af-

ter all parts of the model chain have undergone thorough validation is it justified to view 

the corresponding set of projections as an ensemble in a statistical sense, with no criterion 

left to constrain the projections any further and rendering them as truly indistinguishable. 555 

With such an ensemble of projections a fully inferential ANOVA becomes possible. Using 

the likely setting of SCN, GCM, and, DSC as random and LOC as a fixed factor, one could 

establish the influences of these factors in a strict statistical sense. But note that while dip1 

provided a quite thorough verification against present climate that all non-tested methods 

should undergo, some questions remain whether that will sufficiently constrain the future 560 

projections. For example, some elements of the methods such as the detrending/retrending 

component of BCSD or TG, or any sort of bias correction, all of which crucially affect fu-

ture simulations, can only be tested on a longer time horizon of several decades which is 

not (yet) available. 

Given the strong seasonality that is evident in the study region, a useful extension of 565 

the present analysis would be to include the four seasons (or the 12 months), both in the 

testing for present climate and as an additional ANOVA factor for future projections. It 

should be noted, however, that the current intercomparison setup, whose GCMs were all 

taken from the CMIP3 suite, would be better suited to the new and extended suite of 

CMIP5 models. 570 



28 

 

An interesting future path of research is offered by the concept of surrogate future cli-

mate mentioned in the introduction, where methods are tested against the simulated high-

resolution fields of an RCM. This approach is not limited to RCMs, of course, as high-

resolution surrogate climates can be provided by any downscaling technique, including sta-

tistical. Following that path, the testing of a single method is turned into the mutual con-575 

sistency of any two methods, including the consistency of a method with itself, and with 

end results that may yield consistency clusters resembling those of the MDS plots here. We 

are presently working towards putting this under a sound methodological framework. 
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Tables 

 

Table 1. ClimDEX indices. 

index Indicator name Definitions UNITS change 

CDD Consecutive dry days Maximum number of consecutive days with RR<1mm Days Δ 

CSDI Cold spell duration Days with at least 6 consecutive days when Tn<Q10 Days Δ 

CWD Consecutive wet days Maximum number of consecutive days with RR>=1mm Days Δ 

DTR Diurnal T range Monthly mean difference between Tx and  Tn ºC Δ 

FD0 Frost days Annual count when Tn < 0ºC Days Δ 

GSL Growing season Length Days between first and last span of at least 6 warm enough days Days Δ 

ID0 Ice days Annual count when Tx < 0ºC Days Δ 

PRCPTOT Annual total wet-day precipitation Annual total PRCP in wet days (RR>=1mm) mm Δ% 

R10 Number of heavy precipitation days Annual count of days when PRCP>=10mm Days Δ 

R20 Number of very heavy precipitation days Annual count of days when PRCP>=20mm Days Δ 

R95p Very wet days Annual total PRCP when RR>95th percentile mm Δ% 

R99p Extremely wet days Annual total PRCP when RR>99th percentile mm Δ% 

R25 Number of days above 25 mm Days when PRCP>25mm Days Δ 

RX1day Max 1-day precipitation Monthly maximum 1-day precipitation mm Δ% 

Rx5day Max 5-day precipitation amount Monthly maximum consecutive 5-day precipitation mm Δ% 

SDII 
Simple daily intensity index Annual total precipitation divided by the number of wet days 

(PRCP>=1mm) 

mm/day Δ% 

SU25 Summer days Annual count when Tx > 25ºC Days q 

TN10p Cool nights Percentage of days when Tn<10th percentile % Δ 

TN90p Warm nights Percentage of days when Tn>90th percentile % Δ 



34 

 

TNn Min  Tmin Monthly minimum value of daily minimum temp ºC Δ 

TNx Max Tmin Monthly maximum value of daily minimum temp ºC Δ 

TR20 Tropical nights Annual count when Tn > 20ºC Days Δ 

TX10p Cool days Percentage of days when Tx < 10th percentile % Δ 

TX90p Warm days Percentage of days when Tx > 90th percentile % Δ 

TXn Min  Tmax Monthly minimum value of daily maximum temp ºC Δ 

TXx Max Tmax Monthly maximum value of daily maximum temp ºC Δ 

WSDI Warm spell duration Days with at least 6 consecutive days when Tx > Q90 Days Δ 

 

 

 665 

Table 2. The 8 regions with the corresponding stations. The naming of regions is taken in part from 

dip1. 

region id lon [deg] lat [deg] alt [m] 

Campbell River 1021261 -125.27 49.95 106 

 1021480 -125.43 50.33 23 

 1046390 -124.55 49.88 52 

Mountains 1154400 -116.05 50.88 1170 

 1173210 -116.98 51.30 785 

 117CA90 -117.70 51.23 1875 

Taiga 1192940 -122.60 58.83 1201 

Okanagan 1123992 -119.48 49.87 350 

 1125700 -119.42 50.03 501 

 1123970 -119.38 49.95 430 

Fernie 1152850 -115.07 49.48 1001 
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 1158692 -115.47 49.47 762 

Prince George 1090660 -121.52 53.07 1283 

 1096450 -122.68 53.88 691 

 1096630 -122.52 53.03 545 

Vancouver 1101158 -122.92 49.28 366 

 1103332 -122.57 49.27 147 

 1108447 -123.18 49.20 4 

Coast 1017230 -123.63 48.65 138 

 1018620 -123.43 48.65 19 
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Table 3. The downscaling methods used. Large and small scales are abbreviated as LS and SS, respec-

tively. 

name reference characteristic 

BCSD Wood et al., 2002 

- LS quantile mapping 

- spatial disaggregation 

- temporal disaggregation 

BioSim Regniere and Bolstad, 1994 

- weather generator conditioned on 11 monthly statistics 

- P occurrence modeled from monthly total P and T range  

- disaggregation of P intensity 

- Tx and Tn anomalies as 2-dim AR(2) process 

CDFt Michelangeli et al., 2009 

- common scales for LS and SS 

- cdf transformation (LS) present → future 

- cdf transformation LS → SS (present) 

DQM  

- detrending 

- quantile matching LS → SS (present) 

- retrending (simplified BCSD) 

LARS-WG Semenov and Barrow, 1997 

- Poisson process of wet and dry spells 

- Tn and Tx stochastic Gaussian modeled from wet and dry spells, P intensity from 

semi-empirical distribution 

QRNN Taylor, 2000 - nonlinear quantile regression 

TG Stahl et al., 2008 - weather typing 

XDS Bürger, 1996 

- probit normalization 

- covariance preserving regression 

- probit rescaling 

 

 

 675 
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Table 4. The set of GCMs used. 

GCM institution resolution 

CGCM3 T63 CCCma (CA)  T63 

CNRM CM3 CNRM (FR) T63 

CSIRO MK 3_5 CSIRO (AU) T63 

GFDL CM 2_1 GFDL (US) 2.5°x2° 

MIROC 3_2 MEDRES JAMSTEC (JP) T42 

MPI_ECHAM5 MPI (DE) T63 

 

 

Table 5. Characteristics and issues for the three main downscaling groups. 680 

downscaling group main method characteristic / issues 

BioSim, LARS-WG 

stochastic weather 

generator 

(interannual) variability underestimated, hence many of the quantile-

based indices likely overestimated 

BCSD, CDFt, DQM quantile mapping 

everything inherited from nearest GCM grid point (T and P); minimum 

amount of calibration; BCSD with extra spatial and temporal disaggre-

gation, has some issues from mimicing Tx and Tn from daily average 

and climatological range of T 

QRNN, TG, XDS predictor fields 

sensitive to predictor selection (over- and under-fitting); possible issues 

for XDS with missing values and/or low resolution 
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Figure Captions 

Figure 1. The study area with the typical regions (’Coast’, ’Mountains’, and ’Taiga’ taken from dip1). 

Figure 2. Mean future climate change vs. present variability, as simulated by the 8 downscaling meth-

ods. Per panel this gives 3 scenario points (y-axis) for each of 6×20=120 present-day simulations (x-685 

axis). Variability is given as standard deviation after removing the seasonal cycle. 

Figure 3. For each downscaling (rows) we show for the core variables P, Tx, and Tn  (columns) the 6 

GCM simulations of present variability vs. the 20 observations from LOC, with corresponding root 

mean square values. The line represents identity. 

Figure 4. Proportionality (fitted linear) of simulated present variability and future climate signal. Solid 690 

lines indicate a significantly positive slope. The axes scale is the same as in Figure 2. 

Figure 5. Mean projected change of P from DSC vs. GCM, based on the A1B scenario. For better visi-

bility, the single results for each (GCM, DSC) pair, which would lie on the diagonal, are projected onto 

two slightly different axes, reflecting the GCM part (x-axis) and the DSC part (y-axis, see text). 

Figure 6. Mean change of T (top) and P indices (bottom). A box represents the IQR of the sample (see 695 

text); the range is indicated by the whiskers unless it is beyond the 1.5×IQR in which case a “•” is dis-

played to indicate an ‘outlier’ (an “x” for 3×IQR). The horizontal levels (dashed) of t = ±2.75 indicate 

the significance for any single simulation, if the index is Gaussian. 

Figure 7. Range of simulated change in ClimDEX from the seven downscaling methods. Left: tempera-

ture related ClimDEX; right: precipitation related ClimDEX. The significance levels (dashed) are as in 700 

Figure 6. 

Figure 8. Most extreme climate change results, with respect to temperature (left) and precipitation in-

dices (right), and with increasing (top) or decreasing (bottom) tendency. Titles indicate emission sce-

nario, driving GCM (Table 4), downscaling method (Table 3) and station (Table 2). 

Figure 9. Contribution to variations in projected ClimDEX values, based on a 4-way ANOVA. 705 

Figure 10. Influence of individual components on ClimDEX (cf. Eq. (3)). Blue colors indicate damping, 

red colors amplifying influence of spread. 

Figure 11. Multidimensional scaling of the 8 downscaling methods for the T and P indices. The axes 

represent the optimum two-dimensional embedding of the original space of 5760 and 3960 dimensions, 

respectively (see text). 710 

Figure 12. Original vs. MDS reduced Euclidean distance of the 8 DSC “points”, for T (left) and P in-

dices (right). The line indicates identity. 

Figure 13. Same as Figure 9, but using only the verified downscaling methods BCSD, QRNN, and XDS 

(upper panel) or only CDFt, DQM, and TG which occupy the center of the MDS in Figure 11 (lower 

panel). 715 
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Figure 1. The study area with the typical regions (’Coast’, ’Mountains’, and ’Taiga’ taken from dip1). 
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Figure 2. Mean future climate change vs. present variability, as simulated by the 8 downscaling meth-

ods. Per panel this gives 3 scenario points (y-axis) for each of 6×20=120 present-day simulations (x-

axis). Variability is given as standard deviation after removing the seasonal cycle. 
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Figure 3. For each downscaling (rows) we show for the core variables P, Tx, and Tn  (columns) the 6 

GCM simulations of present variability vs. the 20 observations from LOC, with corresponding root 

mean square values. The line represents identity. 
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Figure 4. Proportionality (fitted linear) of simulated present variability and future climate signal. Sol-

id lines indicate a significantly positive slope. The axes scale is the same as in Figure 2. 
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Figure 5. Mean projected change of P from DSC vs. GCM, based on the A1B scenario. For better visi-

bility, the single results for each (GCM, DSC) pair, which would lie on the diagonal, are projected on-

to two slightly different axes, reflecting the GCM part (x-axis) and the DSC part (y-axis, see text). 
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Figure 6. Mean change of T (top) and P indices (bottom). A box represents the IQR of the sample (see 

text); the range is indicated by the whiskers unless it is beyond the 1.5×IQR in which case a “•” is 

displayed to indicate an ‘outlier’ (an “x” for 3×IQR). The horizontal levels (dashed) of t = ±2.75 indi-

cate the significance for any single simulation, if the index is Gaussian. 
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Figure 7. Range of simulated change in ClimDEX from the seven downscaling methods. Left: tempera-

ture related ClimDEX; right: precipitation related ClimDEX. The significance levels (dashed) are as 

in Figure 6. 
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Figure 8. Most extreme climate change results, with respect to temperature (left) and precipitation in-

dices (right), and with increasing (top) or decreasing (bottom) tendency. Titles indicate emission sce-

nario, driving GCM (Table 4), downscaling method (Table 3) and station (Table 2). 
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 735 

Figure 9. Contribution to variations in projected ClimDEX values, based on a 4-way ANOVA. 
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Figure 10. Influence of individual components on ClimDEX (cf. Eq. (3)). Blue colors indicate damp-

ing, red colors amplifying influence of spread. 
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Figure 11. Multidimensional scaling of the 8 downscaling methods for the T and P indices. The axes 

represent the optimum two-dimensional embedding of the original space of 5760 and 3960 dimen-

sions, respectively (see text). 
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Figure 12. Original vs. MDS reduced Euclidean distance of the 8 DSC “points”, for T (left) and P in-

dices (right). The line indicates identity. 
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Figure 13. Same as Figure 9, but using only the verified downscaling methods BCSD, QRNN, and 

XDS (upper panel) or only CDFt, DQM, and TG which occupy the center of the MDS in Figure 11 

(lower panel). 


