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ESTIMATES OF THE REGRESSION COEFFICIENT
BASED ON KENDALL’S TAU*

PrANAB KUMAR SEN
University of North Carolina, Chapel Hill

The least squares estimator of a regression coefficient g is vulnerable
to gross errors and the associated confidence interval is, in addition,
sensitive to non-normality of the parent distribution. In this paper, a
simple and robust (point as well as interval) estimator of g8 based on
Kendall’s [6] rank correlation tau is studied. The point estimator is the
median of the set of slopes (Y;—Y;)/({;—¢:) joining pairs of points
with #;7#¢;, and is unbiased. The confidence interval is also determined
by two order statistics of this set of slopes. Various properties of these
estimators are studied and compared with those of the least squares
and some other nonparametric estimators.

1. INTRODUCTION

ET Yy, - - -, Y, be n independent random variables with distributions
P

{Y,-Sx}=F¢(x)=F(x-a—Bt¢), i=1:"':n; (11)

where F(z) is a continuous cumulative distribution function (edf), &, - - -, .
are known constants (not all equal) and (e, B) are unknown parameters. Our
purpose is to consider point as well as interval estimators of the regression co-
efficient 8. If F(x) has a finite variance ¢2(F), the best (i.e., minimum variance
unbiased) linear estimator of 8 is provided by the method of least squares. This
estimator is vulnerable to gross errors and is also inefficient for distributions
with ‘heavy tails’ (e.g., double exponential or logistic def). Moreover, the asso-
ciated confidence interval for B, being based on the assumed normality of
F(z), is sensitive in small samples to any departure from this assumption.
Alternative estimators of 8 based on suitable rank tests are proposed by Mood
and Brown [8], Theil [12] and Adichie [1], among others. Mood and Brown
propose to estimate @ and 8 simultaneously from the two equations

Median(Y; — @ — Bt;) =0 fort; < tu,

. - (1.2)
Medlan(Yi - a — Btl) =0 fOI‘ t; > tM,

where t), is the median of &;, - - - , t,. The point estimate (&, f) is to be obtained
by a trial and error solution and is subject to some arbitrariness when ¢, is not
uniquely defined (a case that may arise when #, - - -, ¢, are not all distinet).
Moreover, § is usually inefficient as compared to the other estimators (cf. [1]).
A general class of point estimators of 8 (and also of «) is considered by Adichie
[1]. However, his basic assumption that F(z) is an absolutely continuous and
symmetric distribution function with an absolutely continuous and square
integrable density function is more restrictive than what is really needed in this
paper. Moreover, his point estimators of 8 also require trial and error solutions.
Such a trial and error procedure may indeed be quite laborious when n is not
very small. Finally, Adichie gives no confidence interval for 3. When #;, - - - , £,
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are all distinet, Theil [12] proposes a very simple point estimator of g8, viz.,
the median of the (%) slopes (Y;—Y3)/(t;—t:), 1<i<j<n. He also obtains a
corresponding confidence interval for 8 in terms of these slopes. However, the
asymptotic properties of the estimators are not studied by him. The procedure
to be considered in the present paper is quite analogous to Theil’s, but is based
on weaker assumptions and do not require ¢, - - -, t, to be all distinet. If N
be the number of non-zero differences t;—t; (1<7<j<n), the proposed point
estimator is the median of the N slopes (Y;—Y.)/(t;—¢;) for which #;5t;.
This is shown to be unbiased for 8. The confidence interval for g is also ob-
tained in terms of two order statistics of this set of N slopes. It is shown that
the point and interval estimators of the location-difference in the two-sample
case based on Wilcoxon test, proposed and studied by Hodges and Lehmann
[4], Lehmann [7] and Sen [10, 11] are special cases of the estimators considered
here. Properties of the estimators such as invariance, unbiasedness and asymp-
totic distribution are studied, and the asymptotic relative efficiency (A.R.E.)
of the proposed procedure with respect to the least squares procedure and
Adichie’s [1] procedures are discussed. It is shown that for equally spaced
values of &, - - -, t, or for the two-sample problem (i.e., when ¢;’s can have
only two values), the proposed estimator has A.R.E. never less than 0.864
with respect to the least squares estimator, though such a conclusion is not
necessarily true when 4, - - -, t, are not equally spaced.

2. FORMULATION OF THE ESTIMATORS

. Without any loss of generality we may assume that 6 <t,< -+« <{,; they
are already assumed to be not all equal. We define c(u) to be 1, 0, or —1 accord-
ing as u is >, = or <0. Let then

N = 2 ct—t), 2.1

15i<i<n

i.e., N is the number of positive differences ¢;—1;, so that N <(3), where the
equality sign holds only when &, - - -, ¢, are all distinet. For any real b, define
Z:(b)=Y;—bt;, i=1, - - -, n. We then consider the following statistic basically
related to Kendall’s [6] tau between ¢; and Z;(b), i=1, - - -, n.

n\) —
no = WO T - ez - 2o @2
2 1<i<j<n
Thus, {N@)}* U.() is the difference-sign score that would appear in the
numerator of the tau coefficient of correlation between the ¢; and the (Y;—bt:),
for some fixed b. Since t;>1; for all 1<j, Z;(b) —Z;(b) is non-increasing in b for
all 1 <i<j<n. Hence, from (2.2) it follows that Us(b) is also non-increasing in b.
Now, by definition, Z1(8), - - -, Z.(8) are n independent and identically dis-
tributed random variables having the cdf F(z—a,) independent of
ta=(, -+, t). Consequently, U,(8) will be an estimator of 0, and will
be stochastically small. In fact, U,(8) is a strictly distribution-free statistic
having a distribution symmetric about 0 (cf. [6]). Thus one way of estimating
B is to make U,(b) (by a proper choice of the estimator b) as close to zero as
possible. Since, U, (b) is non-increasing in b, there will be an half-open interval
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(in b) for which U, (b) will be equal to zero. The mid-point of this interval sug-
gests itself as a natural estimate of 8. Mathematically, we define the estimator

as follows. Let
* = Supib: Un(b) > 04,
Bi up | (b) } 2.3)
BF = Inf{b: U.(b) < 0}.

Then, our proposed estimator is
B* = (B + ). (2.4)

It may be noted that if instead of working with Kendall’s tau, we work with
the sample covariance of Z;(b) and t;, =1, - - -, n, we will obtain the least
squares estimator

2
)

™

=f<“—VMw4m{i@—aﬁ

where V,=(1/n) > 7 .Y; and #,=(1/n) D, "t An explicit formula for B*
will be considered in section 3.

To construct a confidence interval for 8 based on U.(b), we again note that
U.(B) is a distribution-free statistic having a distribution symmetric about 0.
Hence, depending on the sample size n, we can always select (U, ¢,) such that

P{—Ur < U.(8) < UnlB} =1 = e, (2.5)

where 0<e,<1. For small values of n (say, n<10), we may use Table 1 of
Kendall [6, p. 171] to find appropriate values of U} and e,. For large sample
sizes, we adopt the following procedure. Let ¢, be composed of a,(>2) distinct
sets of elements, where in the ith set there are u; elements which are all equal,
for i=1, - - -, a,. We define

V.= (1/18){n(n — 1)(2n + 5) — :‘njuj(uj — 1)(2u; + 5)}. (2.6)

j=1

Thus V, is the variance of {N ®) }% U.(B) with the standard correction for tied
observations, in the form that applies when there are ties in only one variable,
(viz., t). Also, let 7. be the upper 100¢%, point of a standard normal distribution.
Then, from the results of Kendall [6] and Hoeffding [5], we obtain that

* f [ n 3
Un;r%ean/ N 5 , Where e —e as n— . (2.7)

Let us now define

* *
= Supib: Un(b) > — U.,j,
6[] up{ ( ) = } (2.8)

81 = Inf{b: U.() < Us}.
From (2.5) and (2.8), we arrive at the following

P{BL<B<Bu|B8} =1— e, (2.9)
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which is our proposed confidence interval for 8 having the confidence coeffi-
cient 1 —e,(~=1—e for large n). (2.9) provides an exact confidence interval with
confidence coefficient 1 —e, for all unknown (but continuous) F(x), no matter
whether the normality and the finiteness of the variance of F(x) hold or not.
The exact expressions for 85 and 8} are considered in the next section.

3. EXACT EXPRESSIONS FOR THE ESTIMATORS

We recall that among the (3) values of (t;—t;), 1<i2<j<n, only N (defined
by (2.1)) values are non-zero, and the corresponding values of Z;(b)—Z;(b)
only have contributions to U,(b) in (2.2). We now consider the set S of N dis-
tinet pairs (¢, 7) for which ¢;>¢;, and define

Xiy=(Y; =Y/t — ),  (1,))€S. (3.1)

Thus, the X;;’s are the slopes of the lines connecting each pair of points (¢;, Y;)
and (¢;, Y;) where t;7¢;; the pairs of points for which ¢;=¢; are not considered.
It will be seen that the N quantities in (3.1) define both the point and interval
estimators. To do this, we arrange the N values in (3.1) in ascending order of
magnitude and denote the rth smallest value by X, for r=1, - - -, N. Then,
looking at (2.2), we observe that if we compute the value of U.(X ), (r—1)
of the differences Z;(X¢y)—Z:(X () (for which (¢, 7)&ES8) will be negative,
(N —r) will be positive and the remaining one will be exactly equal to 0. As
such, U,(X(») will be equal to (N —2r+1)/{N () }*. Similarly, {N ()} U.(XE)
will be equal to (N —2r), where X+ (or X~) indicates that the value is just
greater than (or less than) X. Now, we write N =2M or 2M 41 according as
N is even or odd. For N=2M+41, we observe that U.(X ) =0, while
Un(Xa141)>0 and Un(X{y4qy) <O. Similarly, for N=2M, it follows that for
any b in the open interval (X, Xarsn), Ua(b) =0, while it is positive or
negative according as b is <Xary or >Xaruy. Hence, from (2.3) and (2.4),
we obtain

X e, N =2M + 1,
T ’ o

X an + Xorsn), N = 2M.

Thus B* is the median of the N numbers { X;;: (4, /)E€S}. To obtain the expres-
sions for 8F and 8%, we let

3
N* = {N(Z)} UY and Mi= 3(N+(—1)iN%)  fori=1,2, (3.3)

where Uj is defined by (2.5). From (2.8), (3.3) and the observations made
above, it follows that U.(Xar))= (N*+1)/{N@ } > U¥, but Un(Xry)
=N*/ {N(;‘)}*= Uy. Hence 87 = X (3. Similarly, 85 =Xy, Hence,

P{Xwy <B < Xarun| B8} =1— e (3.4)

It may be noted that the classical least squares estimator 3, defined just
after (2.4), can also be expressed as a linear function of the slopes {Xij:
(z, j)ES}. In fact, B is a weighted mean of the variables X;; with weights
equal to (t;—t;)?, whereas 8* is the median of the same set of variables. Since
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the median is less affected by gross errors or outliers than a weighted average,
it follows that 8* will be more robust than 3.

We also note that the two sample location problem (cf. [4, 7, 10, 11]) is a
special case of the general regression problem studied here. In this case,

ti= - =t =0 and ty 1= - - - =ty 4n,=1 (where n=n14ns, ny<n). Thus,
N =nyne and B* is the median of the nyng differences (¥V;—Y,), j=n+1, - - -,
m+ng, t=1, - - -, m. Also, 87 and B are defined as the M;th and (M,+1)th

order statistics of these mn, differences where M; and M, are defined by (3.3)
and are based on the Wilcoxon two-sample test (cf. [7, 10, 11]).

4. AN ILLUSTRATIVE EXAMPLE

We consider the following data from Graybill [3, pp. 119-120], also con-
sidered by Adichie [1].

1 2 3 4 10 12 18
y. 9 15 19 20 45 55 78

The least squares estimate of 8 is 4.02. Since all ¢;’s are distinct, N=})=21. .
The values of X;; defined by (3.1) are obtained as (in ascending order)

1, 2.5, 2.88, 3.67, 3.71, 3.75, 3.88, 3.93, 3.94, 4, 4, 4, 4,
406, 4.14, 4.18, 4.25, 475 5, 5 6.

Thus the point estimate of 8 is X 11y =4, which is the same value obtained by
Adichie [1]. He has, however, employed a trial and error procedure for the
computation of his estimator, as the exact expression in (3.2) is not applicable
in his case (cf. [1, section 3)].

Now, from Table 1 of Kendall [6, p. 171], we observe that corresponding
to a value of ¢,=0.07, the value of U} in (2.5) is equal to 11/21. Thus, from
(3.3), we obtain that N*=11, M;=5 and M,=16. Consequently, from (3.4),
we obtain that the open interval (3.71), 4.18 provides a 939, confidence inter-
val for 8, valid for all continuous F(z).

5. REGULARITY PROPERTIES OF THE ESTIMATORS

I. Imvariance. We note that if we define W;=c1+¢,Y; and s;=dy+dot;, 1=1,
-, m, (where ¢; and d; are different from 0), the regression parameter of W

on s will be equal to (co/ds)B. It is easy to verify that like the least squares
estimator 8, the point estimator 8* in (2.4) satisfies this relation. The estimators
B% and B in (2.8) also satisfy this condition and as a result, the confidence
interval in (2.9) may be regarded as invariant under linear transformations on
the variables. Let us denote the point estimator in (2.4) by g*(Y,, t,) to denote

its dependence on Y,=(Yy, - - -, Y,) and ¢,=(h, - - -, t»). Then, it readily
follows from (2.2), (2.3), and (2.4) that
B*¥(Y, + atn, ta) = B*(Ya, t.) +a  for all real a. (5.1)

The same invariance relation is also satisfied by 8f and 8¢ in (2.8), and as a
result the confidence interval in (2.9) is also invariant in the above sense.
Again, by a straightforward generalization of the porof of Theorem 1 of [4],



1384 AMERICAN STATISTICAL ASSOCIATION JOURNAL, DECEMBER 1968

it can be shown that if F(z) is continuous (or absolutely continuous) then so
are the cdfs of all the statistics 8F, By, 85, 8 and 8} — 5.

II. Unbiasedness. We have the following theorem establishing this property
of g*.

Theorem 5.1. The distribution of B* is symmetric about the true parameter 8.

Proof. By virtue of (5.1), we may assume without any loss of generality that
B=0. Rewriting U.(0) as U(Ya., t.), we have from (2.2) that U(—Y,, t,)
= —U(Ya, tu). Also, for =0, U,(0) has a distribution symmetric about 0
(cf. Kendall [6, p. 68]). Hence, U(Ys, ¢,) and, U(—Y,, #.) have the same
distribution. Also from (2.3) and (2.4), we obtain that f* (¥, t.) = —B8*(— Y, ta).
Hence, the distribution of 8*(¥a,, ¢.), being the same as of 8*(— Y., t.), is also
symmetrical about 0, the assumed value of 8. Q.E.D.

II1. Validity when both variables are subject to errors. We consider here the
more general case, in which ¢, is not observable and the observable (random)
variable is W,= (W1, - - - , W,), where W;=t;+v;,i=1, - - -, n. It is assumed
that Y;=a-+pt;+e;, where (ei, v;) are stochastically independent, for =1,

-+, n. Thus, having observed (Y;, W,), i=1, - - -, n, we want to estimate 8.
Theil [11] considered this problem under the assumptions that (s) P {|v;| > ¢:}
=0 for some finite g;(>0), (ii) [ tj—til >g;+g; for all 5£5, and (iii) the random
variables e;=e;—pv;, t=1, - - -, m, are all independent and identically dis-
tributed. Under these assumptions, P{W;=W;, Visj}=1. Thus the W/s
occur in the same order as the ¢;’s and we can consider (with probability 1)
Wi<We< «+ + <W,, so that N, defined by (2.1), is equal to (3). Hence, de-
fining U,(b) as in (2.2), with ¢s replaced by W.’s, we obtain that here with
probability 1,

Un(ﬁ) =<Z>_ Z C(Yj - Y- ﬁ(W, - PVZ'))

i<j

= <;>_1 E c(e — ),

which is symmetrically distributed about 0. Consequently, proceeding as in

Theorem 5.1, we may conclude that the estimate 8* in (3.2) (with ¢;’s replaced

by W/s) is unbiased for 8. The invariance property also holds in this case.
Other properties of the estimator are considered in the next section.

(5.2)

6. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS

Here we shall consider (i) the asymptotic normality of the point estimator in
(2.4), (ii) asymptotic properties of the confidence interval in (2.9), and (iii)
the asymptotic relative efficiencies of the point and interval estimators with
respect to the corresponding estimators based on the least squares principle.
Tor this purpose we define £, as in section 2, and let

TP= Y (- B, A= (1/19) {n(nﬂ-l)—}‘":uxui—l)}, 6.1)

=1 j=1
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where a, and u;’s are defined just before (2.6), and also let

= 2 G = ¥4 1)t — &)/ (Tads). (6.2)

=1
That is, p, is the product moment correlation coefficient between (ty, - « -, ta)
and (1, - - -, n), as adjusted for ties. Finally, we assume that F(x) is absolutely

continuous having a continuous density function f(z) satisfying
B(F) = f fi@)de < . (6.3)

Then, we have the following two theorems whose proofs are supplied in the
Appendix. (In order to take care of the asymptotic situation we conceive of a
sequence of sample sizes and a corresponding sequence of estimators, defined
by (2.4), (2.8) and (2.9). We shall attach the suffix n to these estimators to
denote such a sequence.)

Theorem 6.1. If (2) pn ts strictly positive and (ii) Tp— o as n—w, then
paTH(BE—B) has asymptotically a normal distribution with zero mean and vari-
ance 1/(12B%(F)).

Theorem 6.2. Under the conditions of Theorem 6.1, poTo(B5.—Brn) converges
in probability to 72/ (/3 B(F)), where e 1s the limiting value of €ns defined by (2.9).

We denote the sequence of least squares estimators by 8, and the allied
confidence intervals (corresponding to the same confidence coefficient 1—e)
by B1.»<B<Bu.n Then, it is well known that (i) T\(8.—B8) has asymptotically
a normal distribution with 0 mean and variance o2(F), (where o%(F) is the
variance of the cdf F(z),) and (i) T.(8v,»—B1.») converges in probability to
273 o(F). (In this connection, the reader may be referred to Eicker [2].)
Now, to study the asymptotic relative efficiency (A.R.E.) of B with respect
to B, we compare the reciprocals of their asymptotic variances, and obtain that

AR.E.(8*/B) = 1202(F)p?B2(F), (6.4)

provided p? converges to the limit p2(>0) as n— oo. Similarly, as in [7, 11]
we compare the reciprocals of the squares of the limiting values of T.(BYn
—B1.,) and T.(Bu.n—B1.n) as a measure of their A.R.E., and arrive at (6.4) as
the A:R.E. of the confidence interval in (2.9) with respect to the confidence
interval derived from the least squares estimators. We shall now study (6.4)
in more detail. For this, we recall that ¢, is composed of a. distinct sets of
elements, where in the jth set there are u; elements which are all equal to &,
say, for j=1, -+, a, (>2), where {{f < - - -<tf. Let Rj=uo+ - - - +uj
4+1(u;+1), for j=1, - - -, a, where uo= 0. Then, we have the following:

Theorem 6.3. 0<p, <1, where the upper bound 1 is attained if and only if
tf=a+bR; for all j=1, - - -, a., where b is positive.

Proof. Since ;<< - - - <i,, the numerator. on the right hand side of (6.2)
is non-negative, and hence, p,>>0. To prove that p,<1, we rewrite T,Anp, as
Zj (R =2 (tf —1.) which by the Cauchy-Schwarz inequality is less than
or equal to T.A, where the equality sign holds if and only if () —#.) =b(R;
—=1 for all j=1, - - -, a,. This completes the proof of the theorem.
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Two particular cases where p,=1 are of special interest. First, the general
regression problem with equispaced independent variables where t;=t,+ (i—1)h,
h>0,i=1, - - -, n. The second case relates to the experimental design where all
the observations are placed at the two end-points of an interval for the op-
timum least squares estimation of the slope, i.e., when 4= - - - =17,
taga= -+ + =t,=t; >1}, where n;<n. (As has been noted earlier, the second
case also resembles the classical two-sample location problem.) In either case,
we shall say that the independent variables are optimally designed if p,=1.
We shall also say that the independent variables are asymptotically optimally
designed if p,—1 as n— . As an example, consider the following design:

¥ =2 -1 1 2 £ =0

(6.5)
U; 1 m m 1 n=2m-+ 2.

Here, clearly p,—1 as n—. From theorem 6.3 and the above discussion we
readily arrive at the following theorem.

Theorem 6.4. A.R.E. (B*I B) <12¢%(F)B2(F), where the equality sign holds if
the independent variables are (at least asymptotically) optimally designed.

Thus, for optimal or asymptotically optimal designs, the A.R.E. of 8* rela-
tive to § is the same as that of the Wilcoxon test with respect to the Student’s
t-test (for the two sample location problem). Thus, as in [9, p. 89], it follows
that (i) when F(z) is normal, this A.R.E. is equal to 3/x=0.955, (ii) when
F(x) is logistic or double exponential, it is greater than unity, (iii) for distribu-
tions with ‘heavy tails’ (such as Cauchy ete.), it may be indefinitely large and
(iv) for any continuous F(z), it cannot be less than 0.864. On the contrary, if
ti, - - +, t, are not optimally designed, so that p, does not tend to 1 as n—,
this A.R.E. may not have any lower bound (such as 0.864 or so). In fact, if
pa—0 as n— 0, 50 also will this A.R.E. As an example of a bad design, consider
the following

t¥ —m —1 1 m (m>1)

(6.6)
Uy 1 m m 1 n=2m-2

By straightforward computations it follows that
pw =mBm + 1)/{m@m + 1)(m? + dm? + 4m + 1)} = 0(3/m¥) = 0(n~?), (6.7)

and this converges to zero as n— . In spite of such pathological examples, in
actual practice, p, is usually well away from 0, and as a result (6.4) can be used
to provide a reasonable idea about the efficiency of 8*. However, theorem 6.1,
(6.4) and theorem 6.4 clearly indicate that if the choice of #, is left to the ex-
perimenter, he should always try to select ¢, in such a way that (i) p. is either
exactly or nearly equal to 1 and (ii) 75 is maximum for the practicable range
of values of t;, - + -, tn.

It is also worth comparing the A.R.E. of 8* with respect to the estimators
proposed by Adichie [1]. His estimates are in fact based on a class of ‘mixed
rank’ statistics of the type > 7_.(ti—Zu)¥n(R;/(n+1)), where R; refers to the
rank of ¥; among Y3, - - -, Y, and ¢, is some suitable rank score. For general
¥n, the expression for the A.R.E. of his estimator with respect to B is given by
(6.1) of [1]. Hence, the A.R.E. of 8* with respect to his estimator can be ob-
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tained from our (6.4) and his (6.1). A special case considered by him in section
3 [1, pp. 896-897] is the estimator 3, based on the Wilcoxon-scores statistic
ie, on D 7 (ti—hR;, and in this case, the A.R.E. of 3, with respect to 3
comes out as 1202(F)B%(F). Thus, the A.R.E. of 8* with respect to 3, is equal
to the limiting value of p;, provided such a limit is different from 0. This means
that for optimum or asymptotically optimum designs, 8* and §, are asymp-
totically equally efficient, but, unlike 8*, 8, is not affected by bad design of
t.. However, this is not unexpected. B,, like §, utilizes the exact values of
t, © + -, tn in the mixed-rank statistic, whereas 8* only utilizes their ordering.
On the other hand, 3, has to be obtained by a trial and error solution, where-
as B* can be obtained simply as the median of the slopes. So in actual practice,
if p, is close to unity, it may definitely be of some advantage to consider a
(possibly) slightly inefficient but quick estimator rather than a computationally
complicated one.
In passing, we may remark that by virtue of theorem 6.2,

é(F) = Te/2/{ \/éPnTn(o@;,n_,Bt,n)} _P) B<F), asn — o, (68)

for all absolutely continuous F(x). This result is an immediate generalization
of a similar result (for the two sample location problem) (cf. [7, 11]) to the more
general regression problem.

7. APPENDIX

The proofs of theorems 6.1 and 6.2 are based on the following.

Theorem 7.1. If (2) pn s strictly positive and (i1) Tp—w as n— o, then under
Hy:8=0, [{N(Z) VUL(b/T,) +4bB(F)pad,]/VE has asymptotically a normal
distribution with zero mean and wnit variance, where N, U,(b/T4w), Va, T» and
Ay, pn and B(F) are defined by (2.1), (2.2), (2.6), (6.1), (6.2) and (6.3) respec-
tively.

Proof. We mote that for large T., E{c(Z;(b/T)—Z:ib/Tx)|Ho}
=2Py(Y;—Y ;> (b/Tx)(t;—t:))—1, (where P, indicates that H, is assumed to
be true), reduces to —2b(t;—t;)B(F)/T.+0o(T,;"). Also, we note that
2 i<i(ti—t:) =2p,A,T,. Hence, it follows from (2.2) that E{U.(b/T.)| Ho}
= —4IB(F)pAn/ {N (;‘)}”f+o(1). In a similar manner, it can be shown that
{N@}Var[U.(b/T,)]/V. converges to one as n—w. Finally, the asymptotic
normality of U,(b/T.) follows readily from Theorem 7.1 of Hoeffding [5],
after noting that U,(b/T,) is a U-statistic for all real b. Q.E.D.

Proof of Theorem 6.1. Here also we assume without any loss of generality
that 8=0. Then, it follows from (2.2), (2.3) and (2.4) that for any real a,

lim Po{p.TwBn < a} = lim Po{Un(a/paTy) < 0}

— e (7.1)
= lim GaB(F)A,/V.),

n—r

by theorem 7.1, where G(x) is the standard normal cdf. Now, it follows from
(2.6) and (6.1) that A3/V,—3/4 as n— . Consequently, 4B(F)A,/V} tends
to /12 B(F), and this completes the proof.
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For the proof of theorem 6.3, we note that for any two real and
finite (b, b"), under H,:8=0, the covariance of (N@/Va} U0/ {pnTn})
and {N®)/ Va2 U /paT»}) can be shown to be asymptotically equal to
unity. Hence, using the results of theorem 7.1, we see that as n— 0,

{N(;)/Vn}%~E{Un(b/{PnTn}) — Ua@®'/{paTa})}

— 4 — B)BF)A/Vi—0, (7.2)

{N(Z) / V,.} Var{ Un(b/{pTn}) — Ua®'/{paTu})} — 0. (7.3)

(7.2) and (7.3) along with the Chebyshev’s inequality imply that

l{N(Z)/Vn}%{Un(b/{pnTn}) — Un(t'/{paTa})}

(7.4)
— 4 — B)B(F) A,V l 2,0.

Now, proceeding as in theorem 7.1, it follows after some manipulations that
paT(8%,—B) has asymptotically a normal distribution with mean 72
/{+/12B (F)} and variance 1/ {12B(F) } . This implies that

| puTw(Bhn — B) — 7us/{~/I2B(F)} | is bounded in probability, ~(7.5)
and similarly, it can be shown that
| puT (Bt — B) + /I IZB(D)} | is bounded in probability. (7.6)

From (7.4), (7.5) and (7.6), we may conclude (on noting that by assumption
B8=0) that

v %)/ vk 08 ) - U]

= 4PnTn(6’:l,n - 6"1‘..n)B(F) . An/V: + Up(l)-

Now, by (2.7) and (2.8), the left hand side of (7.7) converges to 2.y, and also,
A,/Vi—+/3/2 as n— . Hence, theorem 6.2 follows from (7.7). Q. E.D.

(7.7)
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