You are here
Publications Library
Primary tabs
-
Publication Date: Jul 2023
This report outlines a method for selecting a subset of earth system models (ESMs) from the Sixth Coupled Model Intercomparison Project (CMIP6) that is sufficiently representative of an ensemble of 26 models from CMIP6 for Canada and its subregions. The specific objective is to obtain a subset of reasonably independent ESMs that captures the overall range of projected change in a representative set of climate extremes (ETCCDI or Climdex) indices constructed from the ESM outputs. Projections are calculated for a future epoch corresponding to a global mean temperature change of 2 ℃ relative to 1971-2000, using results from two of the CMIP6 Shared Socioeconomic Pathways (SSPs), SSP2-4.5, and SSP5-8.5. The selection procedure is described below and representative subsets are provided for Canada and five of its subregions.
-
Publication Date: Jun 2023
This Science Brief covers a paper published in Nature Climate Change that uses reanalysis data to examine extreme fire weather and the conditions that drive it over the 1979-2020 period. The paper shows that temperature and relative humidity are driving observed global trends of increased fire weather. In this Science Brief we discuss what these results tell us about changes to fire weather in our province and across Canada.
-
Publication Date: Jun 2023
This issue of the PCIC Update contains the following stories: Climate Projections for the City of Terrace Released and A Mystery Gremlin Resolved! It also contains an update on the Pacific Climate Seminar Series, staff changes at PCIC and PCIC's most recent publications. The staff profile in this issue is on Tom Kunkel.
-
Publication Date: Jun 2023
One of the key uncertainties in climate model simulations has to do with the response of low-lying marine clouds to increasing temperatures. A recent paper in the journal Nature uses a mix of radar, lidar and data from atmospheric probes to test one of the mechanisms by which cloud cover is projected to be reduced under climate change. Their findings show that this mechanism is not evident in the trade wind regions, which suggests that might not occur in nature. This further suggests that the most extreme estimates of the climate's response to greenhouse gas emissions are less likely than earlier research suggests. Here we discuss what these results tell us about changes to the Earth's sensitivity to greenhouse gas emissions and what this may mean for our province.
-
Publication Date: May 2023
The Climate Projections for the City of Terrace report provides projections and impacts analysis for the City of Terrace, BC and is intended to support decision making throughout the region and to help community partners better understand how their work may be affected by the changing climate
-
Publication Date: Apr 2023
This issue of the PCIC Update contains the following stories: Correcting CMIP6 Model Output for Downscaling, Bilingual Design Value Explorer Announcement, and IPCC Summary for Policy Makers on Synthesis Report. It also contains an update on the Pacific Climate Seminar Series, staff changes at PCIC and PCIC's most recent publications. The staff profile in this issue is on Nina Nichols.
-
Publication Date: Dec 2022
This issue of the PCIC Update contains the following stories: An Unprecedented Warm and Dry Start to Autumn in Southern BC Gives Way to a Cooler Winter Forecast, Continued Refinement of PCIC’s Downscaling Methods, Analysing Climate Change Impacts on the Nechako River and Working With Hydrologic Projections. It also contains an update on the Pacific Climate Seminar Series, staff changes at PCIC and PCIC's most recent publications. The staff profile in this issue is on Dr. Samah Larabi.
-
Publication Date: Oct 2022
This is the Pacific Climate Impacts Consortium's 2021-2022 Corporate Report.
-
Publication Date: Jul 2022
This report, the first volume in the VIC Generation 2 deployment reports, provides a description of VIC-Glacier (VIC-GL) model changes and upgrades.
-
Publication Date: Jul 2022
This report, the second volume in the VIC Generation 2 deployment reports, provides a description of modelling glacier dynamics with the HydroConductor Model.
-
Publication Date: Jul 2022
This report, the third volume in the VIC Generation 2 deployment reports, provides a description of vegetation and topography parameterization.
-
Publication Date: Jul 2022
This, the fifth volume in the VIC Generation 2 deployment reports, provides a description of model calibration.
-
Publication Date: Jul 2022
This, the sixth volume in the VIC Generation 2 deployment reports, provides a description of model set-up and deployment for the Peace, Fraser, and Columbia basins.
-
Source Publication: Weather and Climate Extremes, 36, 100441, doi:10.1016/j.wace.2022.100441
Publication Date: Jun 2022
A strong atmospheric river made landfall in southwestern British Columbia, Canada on November 14th, 2021, bringing two days of intense precipitation to the region. The resulting floods and landslides led to the loss of at least five lives, cut Vancouver off entirely from the rest of Canada by road and rail, and made this the costliest natural disaster in the province's history. Here we show that when characterised in terms of storm-averaged water vapour transport, the variable typically used to characterise the intensity of atmospheric rivers, westerly atmospheric river events of this magnitude are approximately one in ten year events in the current climate of this region, and that such events have been made at least 60% more likely by the effects of human-induced climate change. Characterised in terms of the associated two-day precipitation, the event is substantially more extreme, approximately a one in fifty to one in a hundred year event, and the probability of events at least this large has been increased by a best estimate of 45% by human-induced climate change. The effects of this precipitation on streamflow were exacerbated by already wet conditions preceding the event, and by rising temperatures during the event that led to significant snowmelt, which led to streamflow maxima exceeding estimated one in a hundred year events in several basins in the region. Based on a large ensemble of simulations with a hydrological model which integrates the effects of multiple climatic drivers, we find that the probability of such extreme streamflow events in October to December has been increased by human-induced climate change by a best estimate of 120–330%. Together these results demonstrate the substantial human influence on this compound extreme event, and help motivate efforts to increase resiliency in the face of more frequent events of this kind in the future.
-
Publication Date: Jun 2022
This issue of the PCIC Update contains the following stories: Providing Extreme Streamflow Values for the Fraser River and Joint CMOS/ESC/CGU Conference. The staff profile for this issue is on Dr. Pei-Ling Wang.
-
Publication Date: May 2022
This issue of the PCIC Update covers the following stories: Downscaled CMIP6 Data Now Available; Release of the Design Value Explorer; IPCC Reports on Impacts, Adaptation, Vulnerability and Mitigation; and New Section and Sector Modules on ClimateData.ca. The Science Brief mentioned in this issue is on changes to Western Canadian glaciers. The talks discussed in this issue were delivered by Professor Ted Shepherd, Dr. Mohamed Ali Ben Alaya, Dr. Nathan Gillett and Markus Schnorbus, Dr. John Fyfe, Dr. Paul Kushner and Dr. Hans von Storch. The staff profile in this issue is on Stacey O'Sullivan.
-
Publication Date: Apr 2022
As a consequence of global warming, the world's glaciers have been shrinking. Changes to glaciers in BC could have wide-ranging impacts to BC's ecosystems and human communities, across multiple sectors. Remote sensing data has been invaluable in measuring and characterizing changes to the world's glaciers. Recent research published in Remote Sensing of the Environment using such data shows that western Canadian glaciers have been melting at an accelerating rate and examines how this is related to changes in seasonal temperature and precipitation. Here we discuss what these results tell us about changes to western Canada's glaciers.
-
Source Publication: Bulletin of the American Meteorological Society, 103, 3, S50-S54, doi:10.1175/BAMS-D-21-0143.1
Publication Date: Mar 2022
On 6–8 January 2021, a cold air outbreak swept across eastern China, peaking over the North China Plain the night of 6 January, when 219 weather stations recorded the lowest nighttime temperature since 1961. In total, 498 stations recorded the lowest daytime or nighttime temperature since 1961 during the 3-day event. This event, together with two other cold outbreaks that affected the region on 13–15 December 2020 and 29 December 2020–1 January 2021, led to historic peak electricity demand and resumption of the operation of the only remaining coalfired generating plant in Beijing. This analysis puts the cold outbreak into historical perspective by considering changes in the likelihood of such events over 1961–2020 in the context of a climate that is being warmed by anthropogenic forcing.
-
Source Publication: Climate Dynamics volume, 58, 793–809, doi:10.1007/s00382-021-05933-3
Publication Date: Feb 2022
We report on the characteristics of precipitation associated with three types of landfalling atmospheric rivers (ARs) over western North America in the winter season from 1980 to 2004. The ARs are classified according to three landfalling regions as southern, middle and northern types. Two main centers of precipitation are associated with the contributions by the ARs: one over Baja California linked to the southern type of the ARs, and the other over Washington State correlated with the northern and middle types of the ARs. ARs are seen to play a dominant role in the occurrences of extreme precipitation events, with a proportionately greater impact on more extreme events. Moisture flux convergence makes the dominant contribution to precipitation when ARs and extreme precipitation occur simultaneously in the studied areas. Moisture flux convergence in these cases is, in turn, dominated by the mean and transient moisture transported by the transient wind, with greater contribution from the latter, which is mainly concentrated in certain areas. The magnitude and direction of vertically integrated vapor transport (IVT) also play a role in determining the amount of precipitation received in the three regions considered. Larger IVT magnitude corresponds to more precipitation, while an IVT direction of about 220° (0° indicating east wind) is most favorable for high precipitation amount, which is especially obvious for the northern type of the ARs.
-
Publication Date: Feb 2022
PCIC is a regional climate service provider dedicated to ensuring the provision of quantitative, high qualityclimate information to stakeholders and the public in BC and more widely. PCIC considers itself to be a competent, innovative and reliable climate service provider that works at a very high level of technical proficiency. Motivated by our stakeholders’ needs, PCIC bases its services on results obtained from the global climate research community and its own applied, regional climate research. It also works to increase the capacity of others to use climate information and understand its limitations.
This plan articulates PCIC’s ambition to serve as THE authoritative climate services provider in our region by setting out several service objectives for the organization that encompass a spectrum of activities ranging from direct data delivery to user-specific interpretation and training. These overarching service objectives are supported by several strategic objectives that are required to achieve our service objectives as well as a strategy for electronic services delivery. A key tool in achieving these objectives will be the careful use of climate change simulations produced for Phase 6 of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016), which uses updated models compared to those considered in IPCC (2014), and considers a wider range of emissions scenarios, called Shared Socioeconomic Pathways (SSPs).